Refine Your Search

Topic

Author

Search Results

Technical Paper

Toward Human-Robot Interface Standards: Use of Standardization and Intelligent Subsystems for Advancing Human-Robotic Competency in Space Exploration

2006-07-17
2006-01-2019
NASA's plans to implement the Vision for Space Exploration include extensive human-robot cooperation across an enterprise spanning multiple missions, systems, and decades. To make this practical, strong enterprise-level interface standards (data, power, communication, interaction, autonomy, and physical) will be required early in the systems and technology development cycle. Such standards should affect both the engineer and operator roles that humans adopt in their interactions with robots. For the engineer role, standards will result in reduced development lead-times, lower cost, and greater efficiency in deploying such systems. For the operator role, standards will result in common autonomy and interaction modes that reduce operator training, minimize workload, and apply to many different robotic platforms. Reduced quantities of spare hardware could also be a benefit of standardization.
Technical Paper

The Orion Air Monitor Performance Model; Dynamic Simulations and Accuracy Assessments in the CEV Atmospheric Revitalization Unit Application

2009-07-12
2009-01-2521
The Orion Air Monitor (OAM), a derivative of the International Space Station's Major Constituent Analyzer (MCA) (1–3) and the Skylab Mass Spectrometer (4, 5), is a mass spectrometer-based system designed to monitor nitrogen, oxygen, carbon dioxide, and water vapor. In the Crew Exploration Vehicle, the instrument will serve two primary functions: 1) provide Environmental Control and Life Support System (ECLSS) data to control nitrogen and oxygen pressure, and 2) provide feedback the ECLSS water vapor and CO2 removal system for swing-bed control. The control bands for these ECLSS systems affect consumables use, and therefore launch mass, putting a premium on a highly accurate, fast-response, analyzer subsystem. This paper describes a dynamic analytical model for the OAM, relating the findings of that model to design features required for accuracies and response times important to the CEV application.
Technical Paper

Testing of the Prototype Plant Research Unit Subsystems

1996-07-01
961507
The Plant Research Unit (PRU) is currently under development by the Space Station Biological Research Project (SSBRP) team at NASA Ames Research Center (ARC) with a scheduled launch in 2001. The goal of the project is to provide a controlled environment that can support seed-to-seed and other plant experiments for up to 90 days. This paper describes testing conducted on the major PRU prototype subsystems. Preliminary test results indicate that the prototype subsystem hardware can meet most of the SSBRP science requirements within the Space Station mass, volume, power and heat rejection constraints.
Technical Paper

Terrestrial EVA Suit = FireFighter's Protective Clothing

1999-07-12
1999-01-1964
Firefighters want to go to work, do their job well, and go home alive and uninjured. For their most important job, saving lives, firefighters want protective equipment that will allow more extended and effective time at fire scenes in order to perform victim search and rescue. A team, including engineers at NASA JSC and firefighters from Houston, has developed a list of problem areas for which NASA technology and know-how can recommend improvements for firefighter suits and gear. Prototypes for solutions have been developed and are being evaluated. This effort will spin back to NASA as improvements for lunar and planetary suits.
Technical Paper

Project Orion, Environmental Control and Life Support System Integrated Studies

2008-06-29
2008-01-2086
Orion is the next vehicle for human space travel. Humans will be sustained in space by the Orion subystem, environmental control and life support (ECLS). The ECLS concept at the subsystem level is outlined by function and technology. In the past two years, the interface definition with other subsystems has increased through different integrated studies. The paper presents the key requirements and discusses three recent studies (e.g., unpressurized cargo) along with the respective impacts on the ECLS design moving forward.
Technical Paper

Preliminary Effect of Synthetic Vision Systems Displays to Reduce Low-Visibility Loss of Control and Controlled Flight Into Terrain Accidents

2002-04-16
2002-01-1550
An experimental investigation was conducted to study the effectiveness of Synthetic Vision Systems (SVS) flight displays as a means of eliminating Low Visibility Loss of Control (LVLOC) and Controlled Flight Into Terrain (CFIT) accidents by low time general aviation (GA) pilots. A series of basic maneuvers were performed by 18 subject pilots during transition from Visual Meteorological Conditions (VMC) to Instrument Meteorological Conditions (IMC), with continued flight into IMC, employing a fixed-based flight simulator. A total of three display concepts were employed for this evaluation. One display concept, referred to as the Attitude Indicator (AI) replicated instrumentation common in today's General Aviation (GA) aircraft. The second display concept, referred to as the Electronic Attitude Indicator (EAI), featured an enlarged attitude indicator that was more representative of a “glass display” that also included advanced flight symbology, such as a velocity vector.
Technical Paper

Performance of the Water Recovery System During Phase II of the Lunar-Mars Life Support Test Project

1997-07-01
972417
The recovery of potable water from waste water produced by humans in regenerative life support systems is essential for success of long-duration space missions. The Lunar-Mars Life Support Test Project (LMLSTP) Phase II test was performed to validate candidate technologies to support these missions. The test was conducted in the Crew and Thermal Systems Division (CTSD) Life Support Systems Integration Facility (LSSIF) at Johnson Space Center (JSC). Discussed in this paper are the water recovery system (WRS) results of this test. A crew of 4-persons participated in the test and lived in the LSSIF chamber for a duration of 30-days from June 12 to July 12, 1996. The crew had accommodations for personal hygiene, the air was regenerated for reuse, and the waste water was processed to potable and hygiene quality for reuse by the crew during this period. The waste water consisted of shower, laundry, handwash, urine and humidity condensate.
Technical Paper

Online Project Information System (OPIS) Description, Annual Reporting Outcomes, and Resulting Improvements

2009-07-12
2009-01-2513
The On-line Project Information System (OPIS) is the Exploration Life Support (ELS) mechanism for task data sharing and annual reporting. Fiscal year 2008 (FY08) was the first year in which ELS Principal Investigators (PI's) were required to complete an OPIS annual report. The reporting process consists of downloading a template that is customized to the task deliverable type(s), completing the report, and uploading the document to OPIS for review and approval. In addition to providing a general status and overview of OPIS features, this paper describes the user critiques and resulting system modifications of the first year of OPIS reporting efforts. Specifically, this paper discusses process communication and logistics issues, user interface ambiguity, report completion challenges, and the resultant or pending system improvements designed to circumvent such issues for the fiscal year 2009 reporting effort.
Technical Paper

Noncondensible Gas, Mass, and Adverse Tilt Effects on the Start-up of Loop Heat Pipes

1999-07-12
1999-01-2048
In recent years, loop heat pipe (LHP) technology has transitioned from a developmental technology to one that is flight ready. The LHP is considered to be more robust than capillary pumped loops (CPL) because the LHP does not require any preconditioning of the system prior to application of the heat load, nor does its performance become unstable in the presence of two-phase fluid in the core of the evaporator. However, both devices have a lower limit on input power: below a certain power, the system may not start properly. The LHP becomes especially susceptible to these low power start-ups following diode operation, intentional shut-down, or very cold conditions. These limits are affected by the presence of adverse tilt, mass on the evaporator, and noncondensible gas in the working fluid.
Technical Paper

Metric Evaluation of Food Packaging Scenarios Intended for a Mars Surface Mission

2006-07-17
2006-01-2067
The National Aeronautics and Space Administration (NASA) is working towards future long duration manned space flights beyond low earth orbit. For these missions several food provisioning strategies are being investigated. Individual, prepackaged meals may be provided throughout the mission or commodities may be taken in bulk and processed while on the planetary surface. To enable these different supply scenarios, a packaging system must be developed that will protect the food or commodity and have minimal impact on system mass. Metric values for a prepackaged scenario and a bulk supply scenario, using current packaging material technologies, were compared. The results of this comparison show that bulk packaging penalties will potentially be more than an order of magnitude less than those of a prepackaged food system.
Technical Paper

Life Sciences Research in the Centrifuge Accommodation Module of the International Space Station

2000-07-10
2000-01-2247
The Centrifuge Accommodation Module (CAM) will be the home of the fundamental biology research facilities on the International Space Station (ISS). These facilities are being built by the Biological Research Project (BRP), whose goal is to oversee development of a wide variety of habitats and host systems to support life sciences research on the ISS. The habitats and host systems are designed to provide life support for a variety of specimens including cells, bacteria, yeast, plants, fish, rodents, eggs (e.g., quail), and insects. Each habitat contains specimen chambers that allow for easy manipulation of specimens and alteration of sample numbers. All habitats are capable of sustaining life support for 90 days and have automated as well as full telescience capabilities for sending habitat parameters data to investigator homesite laboratories.
Technical Paper

Guidance for Trade Studies of Flight-Equivalent Hardware

2007-07-09
2007-01-3223
Spacecraft hardware trade studies compare options primarily on mass while considering impacts to cost, risk, and schedule. Historically, other factors have been considered in these studies, such as reliability, technology readiness level (TRL), volume and crew time. In most cases, past trades compared two or more technologies across functional and TRL boundaries, which is an uneven comparison of the technologies. For example, low TRL technologies with low mass were traded directly against flight-proven hardware without consideration for requirements and the derived architecture. To provide for even comparisons of spacecraft hardware, trades need to consider functionality, mission constraints, integer vs. real number of flight hardware units, and mass growth allowances by TRL.
Technical Paper

Evaluation of a Full-Body Scanning Technique for the Purpose of Extracting Anthropometrical Measurements

2005-07-11
2005-01-3016
A method for capturing full-body scans for the purpose of extracting Extravehicular Activity (EVA) suit measurements is being evaluated. Subjects were marked using reflective spheres enabling researchers to acquire all 118 measurements of the suit sizing protocol. Several researchers measured the subjects using a full-body laser scanner, a motion analysis system, and standard anthropometrical equipment. The linear scanner measurements were compared to the motion analysis data, while the circumferential scanner measurements were compared to the manual data. The mean percent difference between the scanner measurements and motion analysis linear/manual circumferential measurements was 4.21%. It was concluded that the scanner measurements were accurate enough for preliminary sizing of EVA suits.
Journal Article

Electrical Energy Storage to Meet Evolving Aircraft Needs

2012-10-22
2012-01-2199
The value of “ultracapacitors” (also referred to as “supercapacitors” or “electric double layer capacitors” in some literature) as an augmentation device when placed in parallel with “electrochemical” energy storage (i.e. battery) is presented in this paper. Since ultracapacitors possess unique attributes due to their higher value of energy storage density (or Joules/WattHrs per mass) compared to conventional capacitors while maintaining the peak power providing capability (to some degree) typical of conventional capacitors they may provide a near term solution in applications demanding longer battery operating life when placed in parallel. Such demands may be pronounced by the onset of More-Electric-Aircraft peak loads and “cold-crank” Auxiliary Power Unit (APU) electric-starting in demanding cold temperature environments.
Technical Paper

Ejector Design for the Advanced Technology Spacesuit

1998-07-13
981669
In this investigation, analytical models were developed to predict the performance characteristics of axisymmetric single jet ejector. The ejector is divided into four parts, jet, mixer, nozzle, and diffuser. Basic flow equations were combined to calculate end to end flow characteristics for each of the four ejector components. Different jets and mixer combination were tested using three jet and three mixers. Characteristics curves have been drawn to predict flow characteristics of the ejector. Different configuration of jet and mixer incorporated different loss coefficient. Hence to get correct flow characteristics of the ejector right loss coefficient should be used.
Technical Paper

Education Outreach Associated with Technology Transfer in a Colonia of South Texas: Green Valley Farms Science and Space Club for Middle School Aged Children in Green Valley Farms, San Benito, Texas

2004-07-19
2004-01-2419
Texas colonias are unincorporated subdivisions characterized by inadequate water and wastewater infrastructure, inadequate drainage and road infrastructure, substandard housing, and poverty. Since 1989 the Texas Legislature has implemented policies to halt further development of colonias and to address water and wastewater infrastructure needs in existing and new colonias along the border with Mexico. Government programs and non-government and private organization projects aim to address these infrastructure needs. Texas Tech University's Water Resources Center demonstrated the use of alternative on-site wastewater treatment in the Green Valley Farms colonia, San Benito, Texas. The work in Green Valley Farms was a component of a NASA-funded project entitled “Evaluation of NASA's Advanced Life Support Integrated Water Recovery System for Non-Optimal Conditions and Terrestrial Applications.” Two households within the colonia were demonstration sites for the constructed wetlands.
Technical Paper

Dynamic Thermal Management System Modeling of a More Electric Aircraft

2008-11-11
2008-01-2886
Advancements in electrical, mechanical, and structural design onboard modern more electric aircraft have added significant stress to the thermal management systems (TMS). A thermal management system level analysis tool has been created in MATLAB/Simulink to facilitate rapid system analysis and optimization to meet the growing demands of modern aircraft. It is anticipated that the tracking of thermal energy through numerical integration will lead to more accurate predictions of worst case TMS sizing conditions. In addition, the non-proprietary nature of the tool affords users the ability to modify component models and integrate advanced conceptual designs that can be evaluated over multiple missions to determine the impact at a system level.
Technical Paper

Dynamic Model of the BIO-Plex Air Revitalization System

2001-07-09
2001-01-2318
The BIO-Plex facility will need to support a variety of life support system designs and operational strategies. These systems will be tested and evaluated in the BIO-Plex facility. An important goal of the life support program is to identify designs that best meet all size and performance constraints for a variety of possible future missions. Integrated human testing is a necessary step in reaching this goal. System modeling and analysis will also play an important role in this endeavor. Currently, simulation studies are being used to estimate air revitalization buffer and storage requirements in order to develop infrastructure requirements of the BIO-Plex facility. Simulation studies are also being used to verify that the envisioned operation strategy will be able to meet all performance criteria. In this paper, a simulation study is presented for a nominal BIO-Plex scenario with a high-level of crop growth.
Technical Paper

Carbon Dioxide Removal Assembly Software Product Improvements

2004-07-19
2004-01-2545
The Carbon Dioxide Removal Assembly (CDRA) on board the International Space Station (ISS) has experienced periodic check valve and selector valve failures as a result of a gradual build-up of contamination from particles that have breeched the adsorbent bed seals. The current software that controls CDRA has limitations that make troubleshooting the unit difficult in these situations, in large part due to the fact that valve position telemetry is only available during certain times. There are also situations where it is required to perform operations manually that would benefit from added code logic and commands to facilitate these operations. The software has been reviewed for possible upgrades and changes that will allow engineers to better troubleshoot the unit in the event of various failures and also allow for better operability in degraded states.
Technical Paper

Atmospheric Monitoring Strategy for Ground Testing of Closed Ecological Life Support Systems

2004-07-19
2004-01-2477
This paper reviews the evolution and current state of atmospheric monitoring on the International Space Station to provide context from which we can imagine a more advanced and integrated system. The unique environmental hazards of human space flight are identified and categorized into groups, taking into consideration the time required for the hazard to become a threat to human health or performance. The key functions of a comprehensive monitoring strategy for a closed ecological life support system are derived from past experience and a survey of currently available technologies for monitoring air quality. Finally, a system architecture is developed incorporating the lessons learned from ISS and other analogous closed life support systems. The paper concludes by presenting recommendations on how to proceed with requirements definition and conceptual design of an air monitoring system for exploration missions.
X