Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Toxicological Assessment of Sealed Spacecraft Modules

1999-07-12
1999-01-2055
Spacecraft modules that are last purged with clean air several months before they are entered by humans on orbit require careful management. The crew must not be exposed to harmful concentrations of air pollutants when they first enter. The magnitude of the pollution the crew will encounter depends on the volume of the module, the length of time since the last clean-air purge or scrub, the inherent offgassing rate of the materials in the module, the interior temperature of the module while offgassing occurs, and the system leak rate. The time of the last module purge or scrub can be several months before crew entry, so it is essential that the offgassing rate within the module be measured over a suitable interval of time to estimate pollution levels with confidence. Air samples were taken from the STS-74 Russian Docking Module, the STS-79 Spacehab, and the ISS Node 1 prior to launch to predict pollution levels at crew first entry.
Technical Paper

The Portable Monitor for Measuring Combustion Products Aboard the International Space Station

2002-07-15
2002-01-2298
The Toxicology Laboratory at Johnson Space Center (JSC) had provided the combustion products analyzer (CPA) since the early 1990s to monitor the spacecraft atmosphere in real time if a thermodegradation event occurred aboard the Shuttle. However, as the operation of the International Space Station (ISS) grew near, an improved CPA was sought that would include a carbon monoxide sensor that did not have a cross-sensitivity to hydrogen. The Compound Specific Analyzer-Combustion Products (CSA-CP) was developed for use on the International Space Station (ISS). The CSA-CP measures three hazardous gases, carbon monoxide, hydrogen cyanide, and hydrogen chloride, as well as oxygen. The levels of these compounds in the atmosphere following a thermodegradation event serve as markers to determine air quality. The first permanent ISS crew performed the CSA-CP checkout operations and collected baseline data shortly after arrival aboard the ISS in December 2000.
Technical Paper

Supersonic Jet Design, Manufacturing, and Testing for an Advanced Technology Spacesuit Ejector

1999-07-12
1999-01-1996
Two types of supersonic jets, long and short, were designed for an advanced technology spacesuit ejector. Previously, a sonic jet was used in the ejector to improve its performance by reducing oxygen flow through thejetin order to achieve the required suit circulation. The manufacturing of long and short supersonic jets was a challenge which was met successfully by the Miniature Manufacturing Laboratory at NASA/JSC. The jets were tested and their performance was compared with the sonic jet, and it was found that both jets showed improved performance by achieving higher ejector mass ratios.
Technical Paper

Microbiological Analysis of Water in Space

1995-07-01
951683
One of the proposed methods for monitoring the microbial quality of the water supply aboard the International Space Station is membrane filtration. We adapted this method for space flight by using an off-the-shelf filter unit developed by Millipore. This sealed unit allows liquid to be filtered through a 0.45 μm cellulose acetate filter that sits atop an absorbent pad to which growth medium is added. We combined a tetrazolium dye with R2A medium to allow microbial colonies to be seen easily, and modified the medium to remain stable over 70 weeks at 25°C. This hardware was assembled and tested in the laboratory and during parabolic flight; a modified version was then flown on STS-66. After the STS-66 mission, a back-up plastic syringe and an all-metal syringe pump were added to the kit, and the hardware was used successfully to evaluate water quality aboard the Russian Mir space station.
Technical Paper

Immobilized Antimicrobials for the Enhanced Control of Microbial Contamination

2003-07-07
2003-01-2405
The active control of problematic microbial populations aboard spacecraft, and within future lunar and planetary habitats is a fundamental Advanced Life Support (ALS) requirement to ensure the long-term protection of crewmembers from infectious disease, and to shield materials and equipment from biofouling and biodegradation. The development of effective antimicrobial coatings and materials is an important first step towards achieving this goal and was the focus of our research. A variety of materials were coated with antibacterial and antifungal agents using covalent linkages. Substrates included both granular media and materials of construction. Granular media may be employed to reduce the number of viable microorganisms within flowing aqueous streams, to inhibit the colonization and formation of biofilms within piping, tubing and instrumentation, and to amplify the biocidal activity of low aqueous iodine concentrations.
Technical Paper

A Second Generation Volatile Organic Analyzer for the International Space Station

1999-07-12
1999-01-2059
Experiences during the Shuttle and NASA/Mir programs illustrated the need for a real-time volatile organic analyzer (VOA) to assess the impact of air quality disruptions on the International Space Station (ISS). Toward this end, a joint development by the Toxicology Laboratory at Johnson Space Center and Graseby Dynamics (Watford, UK) produced a 1st generation VOA that has been delivered and is ready for the first 5 years of ISS operation. Criteria for the selection of the 1st generation VOA included minimizing the size, weight, and power consumption while maintaining analytical performance. Consequently, a VOA system based upon gas chromatography/ion mobility spectrometry (GC/IMS) was selected in the mid-90’s. A smaller, less resource-intensive device than the 1st generation VOA will be needed as NASA looks beyond ISS operations. During the past three years, efforts to reduce the size of ion mobility spectrometers have been pursued.
X