Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Performance Modeling of Honeywell Turbofan Engine Tested with Ice Crystal Ingestion in the NASA Propulsion System Laboratory

2015-06-15
2015-01-2133
The Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center, has been used to test a full scale Honeywell turbofan engine at simulated altitude operating conditions. The PSL has spray bars to create a continuous cloud of fully glaciated ice crystals. The tests successfully duplicated the icing events that were experienced by the Honeywell engine (ALF502R-5) during flight through ice crystal clouds. After the ice cloud was turned on key engine performance parameters such as the fan speed, air flow rate, fuel flow rate, and compressor exit pressure and temperature responded immediately to the ingestion of the ice crystals. For some of the test points, these performance parameters remained unchanged from the initial response to the ice crystals, while during other test points the engine performance began to deteriorate to the point where an uncommanded loss of thrust control (engine rollback) was judged by the test engineers to have been imminent.
Technical Paper

Ice-Crystal Icing Accretion Studies at the NASA Propulsion Systems Laboratory

2019-06-10
2019-01-1921
This paper describes an ice-crystal icing experiment conducted at the NASA Propulsion System Laboratory during June 2018. This test produced ice shape data on an airfoil for different test conditions similar to those inside the compressor region of a turbo-fan jet engine. Mixed-phase icing conditions were generated by partially freezing out a water spray using the relative humidity of flow as the primary parameter to control freeze-out. The paper presents the ice shape data and associated conditions which include pressure, velocity, temperature, humidity, total water content, melt ratio, and particle size distribution. The test featured a new instrument traversing system which allowed surveys of the flow and cloud. The purpose of this work was to provide experimental ice shape data and associated conditions to help develop and validate ice-crystal icing accretion models.
Technical Paper

Harnessing the Digital Transformation for Development of Electrified Aircraft Propulsion Control Systems

2023-09-05
2023-01-1510
Hybrid electric aircraft propulsion is an emerging technology that presents a variety of potential benefits along with technical integration challenges. Developing these new propulsion architectures with their complex control systems, and ultimately proving their benefit, is a multistep process. This process includes concept development and analysis, dynamic simulation, hardware-in-the-loop testing, full-scale testing, and so on. This effort is being revolutionized and indeed enabled by new digital tools that support increasing the technology readiness level throughout the maturation process. As part of this Digital Transformation, NASA has developed a suite of publicly available digital tools that facilitate the path from concept to implementation. This paper describes the NASA-developed tools and puts them in the context of control system development for hybrid electric aircraft propulsion.
Journal Article

Development of a Coupled Air and Particle Thermal Model for Engine Icing Test Facilities

2015-06-15
2015-01-2155
This paper describes a numerical model that simulates the thermal interaction between ice particles, water droplets, and the flowing air applicable during icing wind tunnel tests where there is significant phase-change of the cloud. It has been previously observed that test conditions, most notably temperature and humidity, change when the icing cloud is activated. It is hypothesized that the ice particles and water droplets thermally interact with the flowing air causing the air temperature and humidity to change by the time it reaches the test section. Unlike previous models where the air and particles are uncoupled, this model attempts to explain the observed changes in test conditions by coupling the conservation of mass and energy equations. The model is compared to measurements taken during wind tunnel tests simulating ice-crystal and mixed-phase icing that relate to ice accretions within turbofan engines.
X