Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Transition Research in the Mach 3.5 Low-Disturbance Wind Tunnel and Comparisons of Data with Theory

1989-09-01
892379
Supersonic wind tunnels with much lower stream disturbance levels than in conventional tunnels are required to advance transition research. The ultimate objectives of this research are to provide reliable predictions of transition from laminar to turbulent flow on supersonic flight vehicles and to develop techniques for the control and reduction of viscous drag and heat transfer. The experimental and theoretical methods used at NASA Langley to develop a low-disturbance pilot tunnel are described. Typical transition data obtained in this tunnel are compared with flight and previous wind-tunnel data and with predictions from linear stability theory,
Technical Paper

Tollmien-Schlschfing Instabilities in Laminar Flow In-Flight Detection of

1987-09-01
871016
The ability of modern airplane surfaces to achieve laminar flow over a wide range of subsonic and transonic cruise flight conditions has been well-documented in recent years. Current laminar flow flight research conducted by NASA explores the limits of practical applications of laminar flow drag reduction technology. Past laminar flow flight research focused on measurements of transition location, without exploring the dominant instability(ies) responsible for initiating the transition process. Today, it is important to understand the specific causes(s) of laminar to turbulent boundary layer transition. This paper presents results of research on advanced devices for measuring the phenomenon of viscous Tollmien-Schlichting (T-S) instability in the flight environment. In previous flight tests, T-S instability could only be inferred from theoretical calculations based on measured pressure distributions.
Technical Paper

Theoretical Investigation for the Effects of Sweep, Leading-Edge Geometry, and Spanwise Pressure Gradients on Transition and Wave Drag at Transonic, and Supersonic Speed with Experimental Correlations

1988-10-01
881484
The results of a design study of a Hybrid Laminar Flow Control (HLFC) wing at transonic speed and correlative studies for finite, swept supersonic wings are discussed in this paper. Transonic HLFC wing was designed such as to obtain laminar laminar flow on the the wing upper surface for X/C of 0.6 and with suction applied from the leading edge to 60% of the chord and with suction applied from just aft of the leading edge to twenty-five percent of the chord. New theoretical methods have been recently developed for predicting pressure distributions, supersonic wave drag and transition location for finite swept wings at transonic and supersonic Mach number conditions and are illustrative computations are given. Results for laminar and turbulent boundary-layer parameters consisting of the displacement effects and skin friction drag are also presented.
Technical Paper

Spin-Up Studies of the Space Shuttle Orbiter Main Gear Tire

1988-10-01
881360
One of the factors needed to describe the wear behavior of the Space Shuttle Orbiter main gear tires is their behavior during the spin-up process. An experimental investigation of tire spin-up processes was conducted at the NASA Langley Research Center's Aircraft Landing Dynamics Facility (ALDF). During the investigation, the influence of various parameters such as forward speed and sink speed on tire spin-up forces were evaluated. A mathematical model was developed to estimate drag forces and spin-up times and is presented. The effect of prerotation was explored and is discussed. Also included is a means of determining the sink speed of the orbiter at touchdown based upon the appearance of the rubber deposits left on the runway during spinup.
Technical Paper

Low-Speed Vortical Flow over a 5-Degree Cone with Tip Geometry Variations

1988-10-01
881422
An experiment was conducted to measure the surface pressures and sectional side forces on a 5° cone with three nose tips. The nose tips included a sharp, an 8.7% blunt, and a 17.5% blunt nose tip. Rings of pressure orifices were located at 40% and 80% of the model length and the model was rolled from ±180° in 9° increments to determine roll dependence. The sectional side force data for the sharp cone showed a strong dependence on the roll orientation of the model. The blunt nose cone configurations also showed a dependence on roll orientation. The blunt nose configurations were effective in reducing the sectional side force for angles of attack up to 25°. However, at angles of attack greater than 35°, the reduction was no longer significant. Pressure distributions for three angles of attack are presented to highlight details of the flow when: vortex asymmetries are just beginning; the vortices are in a steady asymmetric state; a vortex has shed between the 40% and 80% stations.
Technical Paper

Low-Speed Aerodynamic Characteristics of a Powered Nasp-Like Configuration in Ground Effect

1989-09-01
892312
An investigation was conducted in the Langley 14- By 22-Foot Subsonic Tunnel to determine the low-speed aerodynamic characteristics of a powered generic NASP-like configuration in ground effect. The model was a simplified configuration consisting of a triangular wedge forebody, a rectangular mid-section which housed the propulsion simulation system, and a rectangular wedge aftbody. Additional model components included a delta wing, exhaust flow deflectors, and aftbody fences. Six-component force and moment data were obtained over an angle of attack range from −4° to 18° while model height above the tunnel floor was varied from 1/4 inch to 6 feet. Variations in freestream dynamic pressure, from 10 psf to 80 psf, and engine ejector pressure yielded a range of thrust coefficients from 0 to 0.8. Flow visualization was obtained by injecting water into the engine simulator inlets and using a laser light sheet to illuminate the resulting exhaust flow.
Technical Paper

Investigations of Modifications to Improve the Spin Resistance of a High-Wing, Single-Engine, Light Airplane

1989-04-01
891039
Airplane flight tests have been conducted to determine the effects of wing leading-edge modifications and a ventral fin addition on the spin resistance of a typical high-wing, single-engine, general aviation airplane. Drooped wing leading-edge modifications which improve lateral stability at high angles of attack were tested in combination with a ventral fin that improves directional stability. Each modification was evaluated using spin resistance criteria which have been proposed for incorporation into the Federal Aviation Regulations for certification of light aircraft. The best configuration tested, a combination of outboard wing leading-edge droop and a ventral fin, provided a very significant increase in overall airplane spin resistance, but was not sufficient to satisfy all requirements of the spin resistance criteria.
Technical Paper

Cornering and Wear Characteristics of the Space Shuttle Orbiter Nose-Gear Tire

1989-09-01
892347
Tests of the Space Shuttle Orbiter nose-gear tire have been completed at NASA Langley's Aircraft Landing Dynamics Facility. The purpose of these tests was to determine the cornering and wear characteristics of the Space Shuttle Orbiter nose-gear tire under realistic operating conditions. The tire was tested on a simulated Kennedy Space Center runway surface at speeds from 100 to 180 kts. The results of these tests defined the cornering characteristics which included side forces and associated side force friction coefficient over a range of yaw angles from 0° to 12°. Wear characteristics were defined by tire tread and cord wear over a yaw angle range of 0° to 4° under dry and wet runway conditions. Wear characteristics were also defined for a 15 kt crosswind landing with two blown right main-gear tires and nose-gear steering engaged.
Technical Paper

Computational Results for the Effects of External Disturbances on Transition Location on Bodies of Revolution from Subsonic to Supersonic Speeds and Comparisons with Experimental Data

1989-09-01
892381
Computational experiments have been performed for a few configurations in order to investigate the effects of external flow disturbances on the extent of laminar flow and wake drag. Theoretical results have been compared with experimental data for the AEDC cone, for Mach numbers from subsonic to supersonic, and for both free flight and wind tunnel environments. The comparisons have been found to be very satisfactory, thus establishing the utility of the present method for the design and development of “laminar flow” configurations and for the assessment of wind tunnel data. In addition, the present paper presents results of calculations concerning the effects of unit Reynolds numbers on transition. This phenomenon has been observed by a few experimental investigators but has been analyzed in detail for the first time in the present paper with the aid of the theoretical predictions.
Technical Paper

Boundary-Layer Control for Drag Reduction

1987-11-13
872434
Although the number of possible applications of boundary-layer control is large, a discussion is given only of those that have received the most attention recently at NASA Langley Research Center to improve airfoil drag characteristics. This research concerns stabilizing the laminar boundary layer through geometric shaping (natural laminar flow, NLF) and active control involving the removal of a portion of the laminar boundary layer (laminar flow control, LFC) either through discrete slots or a perforated surface. At low Reynolds numbers, a combination of shaping and forced transition has been used to achieve the desired run of laminar flow and control of laminar separation. In the design of both natural laminar flow and laminar flow control airfoils and wings, boundary layer stability codes play an important role. A discussion of some recent stability calculations using both incompressible and compressible codes is given.
X