Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

Status of the International Space Station (ISS) Trace Contaminant Control System

2009-07-12
2009-01-2353
A habitable atmosphere is a fundamental requirement for human spaceflight. To meet this requirement, the cabin atmosphere must be constantly scrubbed to maintain human life and system functionality. The primary system for atmospheric scrubbing of the US on-orbit segment (USOS) of the International Space Station (ISS) is the Trace Contaminant Control System (TCCS). As part of the Environmental Control and Life Support Systems' (ECLSS) atmosphere revitalization rack in the US Lab, the TCCS operates continuously, scrubbing trace contaminants generated primarily by two sources: the metabolic off-gassing of crew members and the off-gassing of equipment in the ISS. It has been online for approximately 95% of the time since activated in February 2001. The TCCS is comprised of a charcoal bed, a catalytic oxidizer, and a lithium hydroxide post-sorbent bed, all of which are designed to be replaced on-orbit when necessary.
Technical Paper

Sabatier Engineering Development Unit

2003-07-07
2003-01-2496
To facilitate life support system loop closure on board the International Space Station (ISS), the Node 3 Oxygen Generation System (OGS) rack contains a functional scar to accommodate a future Carbon dioxide Reduction Assembly (CRA). This CRA uses a Sabatier reactor to produce water from CO2 scrubbed from cabin air and hydrogen byproduct from OGS electrolysis. As part of the effort to better understand and define the functional scar, significant risk mitigation activities have been performed. To address integration risks, a CRA Engineering Development Unit (EDU) has been developed that is functionally equivalent to a flight CRA and is suitable for integrating with ground based carbon dioxide removal and oxygen generation systems. The CRA EDU has been designed to be functionally equivalent to the Sabatier Reactor Subsystem (SRS) portion of the CRA. This paper discusses the CRA design and the major issue expected with the flight unit integration.
Journal Article

Root Cause Assessment of Pressure Drop Rise of a Packed Bed of Lithium Hydroxide in the International Space Station Trace Contaminant Control System

2009-07-12
2009-01-2433
The trace contaminant control system (TCCS) located in the International Space Station's (ISS) U.S. laboratory module employs physical adsorption, thermal catalytic oxidation, and chemical adsorption to remove trace chemical contamination produced by equipment offgassing and anthropogenic sources from the cabin atmosphere. The chemical adsorption stage, consisting of a packed bed of granular lithium hydroxide (LiOH), is located after the thermal catalytic oxidation stage and is designed to remove acid gas byproducts that may be formed in the upstream oxidation stage. While in service on board the ISS, the LiOH bed exhibited a change in flow resistance that leading to flow control difficulties in the TCCS. Post flight evaluation revealed LiOH granule size attrition among other changes. An experimental program was employed to investigate mechanisms hypothesized to contribute to the change in the packed bed's flow resistance.
Technical Paper

Replacement for Internal Active Thermal Control System Fluid Sample Bag Material

2005-07-11
2005-01-3078
The International Space Station (ISS) Internal Active Thermal Control System (IATCS) uses a water based heat transport fluid with specific chemical parameters and additives for corrosion and microbial control. The fluid and hardware have experienced anomalies since activation of the United States Laboratory (USL), including chemical and possibly, microbial corrosion. The required sampling of the fluid has the crewmembers removing samples via an in-line sampling tool to perform real-time trace ammonia contamination tests using color change strips, and filling a 150 ml bag from each loop for the ground laboratory analyses. The former activity requires stable storage of the strips, and for the latter activity, it is highly desirable to return the ground sample as stable as possible. This paper describes the process for materials selection, test methods/set-up, results, and final recommendation for a replacement outer bag.
Technical Paper

Performance Characterization of a Prototype Ultra-Short Channel Monolith Catalytic Reactor for Air Quality Control Applications

2005-07-11
2005-01-2868
Contaminated air and process gases, whether in a crewed spacecraft cabin atmosphere, the working volume of a microgravity science or ground-based laboratory experiment facility, or the exhaust from an automobile, are pervasive problems that ultimately effect human health, performance, and well-being. The need for highly-effective, economical decontamination processes spans a wide range of terrestrial and space flight applications. Adsorption processes are used widely for process gas decontamination. Most industrial packed bed adsorption processes use activated carbon because it is cheap and highly effective. Once saturated, however, the adsorbent is a concentrated source of contaminants. Industrial applications either dump or regenerate the activated carbon. Regeneration may be accomplished in-situ or at an off-site location. In either case, concentrated contaminated waste streams must be handled appropriately to minimize environmental impact.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 1999-2000

2000-07-10
2000-01-2248
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies which provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S ECLS system activities over the past year, covering the period of time between May 1999 and April 2000. Assembly of the ISS has been delayed due to changes in element processing schedules. The 2A.1 logistics flight to ISS occurred in May 1999. The remaining Phase 2 elements have completed most of the element level testing and integration and are approaching final reviews for acceptance for flight. The Phase 3 regenerative ECLS designs have reached the Critical Design Review phase, while several of the Phase 3 elements have held Preliminary or Critical Design Reviews.
Technical Paper

International Space Station Bacteria Filter Element Post-flight Testing and Service Life Prediction

2003-07-07
2003-01-2490
The International Space Station (ISS) uses high efficiency particulate air (HEPA) filters to remove particulate matter from the cabin atmosphere. Known as Bacteria Filter Elements (BFEs), there are 13 elements deployed on board the ISS's U.S. Segment. The pre-flight service life prediction of 1 year for the BFEs is based upon performance engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS Program resources. Thus testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are discussed. Recommendations for realizing significant savings to the ISS Program are presented.
Technical Paper

International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events:February 2005 - 2006

2006-07-17
2006-01-2056
The International Space Station (ISS) continues to mature and operate its life support equipment. Major events occurring between February 2005 and February 2006 are discussed in this paper, as are updates from previously ongoing hardware anomalies. This paper addresses the major ISS operation events over the last year. Impact to overall ISS operations is also discussed.
Technical Paper

International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events: February 2002 - 2004

2004-07-19
2004-01-2383
The International Space Station continues to build up its life support equipment capability. Several ECLS equipment failures have occurred since Lab activation in February 2001. Major problems occurring between February 2001 and February 2002 were discussed in reference 1. Major problems occurring between February 2002 and February 2003 are discussed in this paper, as are updates from previously ongoing unresolved problems. This paper addresses failures, and root cause, with particular emphasis on likely micro-gravity causes. Impact to overall station operations and proposed and accomplished fixes will also be discussed.
Technical Paper

Human Factors Technology for America's Space Program

1982-02-01
821493
NASA is initiating a space human factors research and technology development program in October 1982. The impetus for this program stems from: the frequent and economical access to space provided by the Shuttle, the advances in control and display hardware/software made possible through the recent explosion in microelectronics technology, heightened interest in a space station, heightened interest by the military in space operations, and the fact that the technology for long duration stay times for man in space has received relatively little attention since the Apollo and Skylab missions. The rationale for and issues in the five thrusts of the new program are described. The main thrusts are: basic methodology, crew station design, ground control/operations, teleoperations and extra vehicular activity.
Technical Paper

Future Space Bioinstrumentation Systems

2005-07-11
2005-01-2789
As the duration of space missions increases, the importance of astronaut health monitoring systems increases. Health monitoring during extra-vehicular activity is especially crucial because it is among the most physically demanding phases of space flight With the existing space suit bioinstrumentation system nearing completion of its third decade of service, it is time to consider developing the next generation of bioinstrumentation systems, building on the lessons of the past while incorporating updated technology.
Technical Paper

A Water Recovery System Evolved for Exploration

2006-07-17
2006-01-2274
A new water recovery system designed towards fulfillment of NASA's Vision for Space Exploration is presented. This water recovery system is an evolution of the current state-of-the-art system. Through novel integration of proven technologies for air and water purification, this system promises to elevate existing technology to higher levels of optimization. The novel aspect of the system is twofold: Volatile organic contaminants will be removed from the cabin air via catalytic oxidation in the vapor phase, prior to their absorption into the aqueous phase, and vapor compression distillation technology will be used to process the condensate and hygiene waste streams in addition to the urine waste stream. Oxidation kinetics dictate that removal of volatile organic contaminants from the vapor phase is more efficient.
X