Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Testing, Modeling and System Impact of Metabolic Heat Regenerated Temperature Swing Adsorption

2008-06-29
2008-01-2116
Metabolic heat regenerated temperature swing adsorption (MTSA) technology is being developed for removal and rejection of carbon dioxide (CO2) and heat from a portable life support system (PLSS) to the Martian environment. Previously, hardware was built and tested to demonstrate using heat from simulated, dry ventilation loop gas to affect the temperature swing required to regenerate an adsorbent used for CO2 removal. New testing has been performed using a moist, simulated ventilation loop gas to demonstrate the effects of water condensing and freezing in the heat exchanger during adsorbent regeneration. Also, the impact of MTSA on PLSS design was evaluated by performing thermal balances assuming a specific PLSS architecture. Results using NASA's Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT), a PLSS system evaluation tool, are presented.
Technical Paper

Lunar Portable Life Support System Heat Rejection Study

2009-07-12
2009-01-2408
Performing extravehicular activity at various locations on the lunar surface presents thermal challenges that exceed those that have been experienced in space flight to date. The lunar Portable Life Support System (PLSS) cooling unit must maintain thermal conditions within the spacesuit (SS) and reject heat loads that are generated by both the crew member and the PLSS equipment. The amount of cooling that will be required varies based on lunar location and terrain due to the heat that is transferred between the suit and its surroundings, A study, which assumes three different thermal technology categories, has been completed that studied the resources that are required to provide cooling under various lunar conditions as follows: 1. SS water membrane evaporator 2. Sub-cooled phase change material (SPCM) 3.
Technical Paper

Helmet Exhalation Capture System (HECS) Sizing Evaluation for an Advanced Space Suit Portable Life Support System

2008-06-29
2008-01-2117
As part of NASA's initiative to develop an advanced portable life support system (PLSS), a baseline schematic has been chosen that includes gaseous oxygen in a closed circuit ventilation configuration. Supply oxygen enters the suit at the back of the helmet, passes over the astronaut's body, and is extracted at the astronaut's wrists and ankles through the liquid cooling and ventilation garment (LCVG). The extracted gases are then treated using a rapid cycling amine (RCA) system for carbon dioxide and water removal and activated carbon for trace gas removal before being mixed with makeup oxygen and reintroduced into the helmet. Thermal control is provided by a suit water membrane evaporator (SWME). As an extension of the original schematic development, NASA evaluated several Helmet Exhalation Capture System (HECS) configurations as alternatives to the baseline.
Technical Paper

Fan Performance Testing and Oxygen Compatibility Assessment Results for Future Space Suit Life Support Systems

2009-07-12
2009-01-2448
An advanced Portable Life Support System for a future space suit will require a small, robust, and energy-efficient system to transport ventilation gas through the space suit for lunar Extravehicular Activity (EVA) operations. A trade study identified and compared ventilation transport technologies in commercial, military, and space applications to determine which technologies could be adapted for EVA use. Based on these trade study results, five commercially available, 24-V fans were selected for performance testing at various pressures and flow rates. Measured fan parameters included: fan delta-pressures, input voltages, input electrical currents, and, in some cases, motor windings electrical voltages and currents. A follow-on trade study was also performed to identify oxygen compatibility issues and assess their impact on fan design. This paper outlines the results of the fan performance characterization testing, as well as the results from the oxygen compatibility assessment.
Technical Paper

Development of a Compact, Efficient Cooling Pump for Spacesuit Life Support Systems

2009-07-12
2009-01-2451
A compact, low-power, electrochemically driven fluid cooling pump is currently being developed by Lynntech. With no electric motor and lightweight components, the pump is significantly lighter than conventional rotodynamic and displacement pumps. Reliability and robustness are achieved with the absence of rotating or moving components (apart from the bellows). By employing sulfonated polystyrene-based proton exchange membranes rather than conventional Nafion® membranes, a significant reduction in the actuator power consumption was demonstrated. Lynntech designers also demonstrated that these membranes possess the mechanical strength, durability, and temperature range that are necessary for long-life space operation. The preliminary design for a prototype pump compares very favorably to the design targets of the next generation spacesuit Portable Life Support Systems cooling pump.
X