Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Use of Room Temperature Plasma to Produce and Enhance Engineered Fluid-Handling Surfaces

2005-07-11
2005-01-2905
Orbital Technologies Corporation (ORBITEC) and the University of Wisconsin (UW) have demonstrated the feasibility of utilizing plasma manufacturing methods to functionalize fluid handling surfaces. Performance of hydrophilic coatings generated with both oxygen plasma and dichlorosilane plasma on aluminum (SiH2Cl2) substrates was demonstrated. Both give similar results, significantly decreasing contact angles and improving wicking ability of machined capillary grooves. Deposition of silver nanoparticles using plasma was also demonstrated and tested. Silver concentrations of 2% were obtained on hydrophilic-coated samples. Testing indicated that the silver-coated samples were biocidal against Listeria monocytogenes. Oxide-coated aluminum substrates were also shown to exhibit biocidal action against L. monocytogenes and a variety of other microorganisms.
Technical Paper

Plant Research Unit Control Architecture Overview

2004-07-19
2004-01-2392
High reliability and system flexibility are driving factors in the Plant Research Unit development. Proper selection of the unit electrical and software control architecture is fundamental to achieving these goals. Key features of the PRU control design include the use of a real time operating system for main process control, dynamic power management, a distributed control architecture and subsystem modularity. The chosen approach will allow future modifications and improvements to be incorporated at the subsystem level with minimal impact to the unit overall. Hardware fault tolerance and redundancy enhance system reliability.
Technical Paper

ISRU Technologies to Support Human Space Exploration

2004-07-19
2004-01-2315
In-situ resource utilization (ISRU) is an important part of current mission architectures for both a return to the Moon and the eventual human exploration of Mars. ORBITEC has developed and demonstrated an innovative direct energy processing approach for carbon-reduction of lunar and Martian regolith that can operate in a nearly closed-loop manner. Carbon-reduction of regolith produces oxygen and a variety of other useful products, including silicon, iron and glass ceramic materials. In addition, various ISRU propulsion technologies that utilize lunar and Martian resources have been developed and demonstrated. Work is also being conducted with the USDA on techniques to use biomass and waste materials to manufacture items such as shelters, furniture, filters and paper. Atmospheric carbon dioxide on Mars would be used to support the production of biomass in excess of life support needs to be used as the raw material to manufacture useful products on-site.
X