Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Impact of Transient Operating Conditions on Electrical Power System and Component Reliability

2014-09-16
2014-01-2144
Transient operating conditions in electrical systems not only have significant impact on the operating behavior of individual components but indirectly affect system and component reliability and life. Specifically, transient loads can cause additional loss in the electrical conduction path consisting of windings, power electronic devices, distribution wires, etc., particularly when loads introduce high peak vs. average power ratios. The additional loss increases the operating temperatures and thermal cycling in the components, which is known to reduce their life and reliability. Further, mechanical stress caused by dynamic loading, which includes load torque cycling and high peak torque loading, increases material fatigue and thus reduces expected service life, particularly on rotating components (shaft, bearings).
Technical Paper

Hardware-in-the-Loop Electric Drive Stand Issues for Jet Engine Simulation

2010-11-02
2010-01-1810
Next generation aircraft will require more electrical power, more thermal cooling, and better versatility. To attain these improvements, technologies will need to be integrated and optimized at a system-level. The complexity of these integrated systems will require considerable analysis. In order to characterize and understand the implications of highly-integrated aircraft systems, the effects of pulsed-power, highly-transient loads, and the technologies that drive system-stability and behavior, an approach will be taken utilizing integrated modeling and simulation with hardware-in-the-loop (HIL). Such experiments can save time and cost and increase the general understanding of electrical and thermal phenomena as it pertains to aircraft systems before completing an integrated ground demonstration. As a first step toward completing an integrated analysis, a dynamometer “drive stand” was characterized to assess its performance.
Technical Paper

Experimental Characterization of Brushless Synchronous Machines for Efficient Model-Base System Engineering

2016-09-20
2016-01-2027
Detailed machine models are, and will continue to be, a critical component of both the design and validation processes for engineering future aircraft, which will undoubtedly continue to push the boundaries for the demand of electric power. This paper presents a survey of experimental testing procedures for typical synchronous machines that are applied to brushless synchronous machines with rotating rectifiers to characterize their operational impedances. The relevance and limitations of these procedures are discussed, which include steady-state drive stand tests, sudden short-circuit transient (SSC) tests, and standstill frequency response (SSFR) tests. Then, results captured in laboratory of the aforementioned tests are presented.
Journal Article

A Hybrid Economy Bleed, Electric Drive Adaptive Power and Thermal Management System for More Electric Aircraft

2010-11-02
2010-01-1786
Minimizing energy use on more electric aircraft (MEA) requires examining in detail the important decision of whether and when to use engine bleed air, ram air, electric, hydraulic, or other sources of power. Further, due to the large variance in mission segments, it is unlikely that a single energy source is the most efficient over an entire mission. Thus, hybrid combinations of sources must be considered. An important system in an advanced MEA is the adaptive power and thermal management system (APTMS), which is designed to provide main engine start, auxiliary and emergency power, and vehicle thermal management including environmental cooling. Additionally, peak and regenerative power management capabilities can be achieved with appropriate control. The APTMS is intended to be adaptive, adjusting its operation in order to serve its function in the most efficient and least costly way to the aircraft as a whole.
X