Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Water Immersion Ballasted Partial Gravity for Lunar and Martian EVA Simulation

2007-07-09
2007-01-3145
The University of Maryland Space Systems Laboratory is developing the capability to simulate partial gravity levels for human operational activities through the use of ballast on body segments in the underwater environment. This capability will be important as NASA prepares to return to the Moon by the end of the next decade. The paper discusses various forms of partial gravity simulation used in the past, and derives a targeted set of applications for ballasted underwater simulations. Primary application of this technique is for static or quasistatic activities, such as collecting basic anthropometric data on reach envelopes or postural control, as well as accumulating an experience base on partial gravity habitat and vehicle design and operations.
Technical Paper

Task Scheduling for Cooperative Human/Robotic Space Operations

2008-06-29
2008-01-1985
Future space missions will involve humans and robots cooperatively performing operational tasks in various team combinations. Part of the required preparation for such missions includes understanding the issues involved in task allocation between disparate agents, and efficiently ordering tasks within the mission constraints. The scheduling tool developed in this research distributes pre-allocated task primitives between a cooperative human crew and dexterous robotic team. It combines real-world precedent constraints with algorithms from scheduling theory to reorder and tighten each crew member's individual schedule. The schedules minimize astronaut involvement time by stacking astronaut-performed tasks together in the schedule. This also minimizes astronaut workload in the completion of each task. Hubble Space Telescope Servicing Mission 3A was used as an example to test the allocation and scheduling tool.
Technical Paper

System Overview and Operations of the MX-2 Neutral Buoyancy Space Suit Analogue

2006-07-17
2006-01-2287
A fully operational space suit analogue for use in a neutral buoyancy environment has been developed and tested by the University of Maryland’s Space Systems Laboratory. Repeated manned operations in the Neutral Buoyancy Research Facility have shown the MX-2 suit analogue to be a realistic simulation of operational EVA pressure suits. The suit is routinely used for EVA simulation, providing reasonable joint restrictions, work envelopes, and visual and audio environments comparable to those of current EVA suits. Improved gloves and boots, communications carrier assembly, in-suit drink bag and harness system have furthered the semblance to EVA. Advanced resizing and ballasting systems have enabled subjects ranging in height from 5′8″ to 6′3″ and within a range of 120 lbs to obtain experience in the suit. Furthermore, integral suit instrumentation facilitates monitoring and collection of critical data on both the suit and the subject.
Technical Paper

Dynamic Analysis of an Adjustable Torso Design for a Planetary Pressure Suit

2008-06-29
2008-01-1995
The research discussed in this paper demonstrates further advancements in the concept of a Morphing Upper Torso, which incorporates robotic elements within the pressure suit design to enable a resizable, highly mobile and easy to donn/doff spacesuit. A full scale experimental model has been made, which accompanies several analytical models. The Jacobian matrix for the robotic system, which multiplies the total twist vector of the system to yield the vector of actuator velocities, is derived. This dynamic analysis enables quantification of the dynamic actuator requirements, given demanded trajectories of the rings. A motion capture pilot study was done to develop a methodology to obtain measurements of suit movement and hence the ring trajectories. Subjects performed various tasks that a suited astronaut may perform on a planetary surface, while wearing a torso mockup within the motion capture system.
Technical Paper

Development and Testing Update on the MX-2 Neutral Buoyancy Space Suit Analogue

2004-07-19
2004-01-2343
The University of Maryland Space Systems Laboratory has developed a system that replicates some limited aspects of pressure suits to facilitate neutral buoyancy research into EVA bioinstrumentation, advanced EVA training, and EVA/robotic interactions. After a two year upgrade from its MX-1 predecessor, the MX-2 space suit analogue is currently undergoing a variety of system integration tests in preparation for initial operational testing, leading to routine use for EVA simulation and as a testbed for advanced space suit technology. The MX-2 is built around a hard upper torso with integrated hemispherical helmet and rear-entry hatch. Three-layer soft-goods are used for the arms and lower torso, while an open loop air system regulates suit pressure to 3 psid. Wrist disconnects allow the use of standard EMU or Orlan gloves, or experimental gloves such as the mechanical counterpressure gloves and power-assisted gloves developed previously by the SSL.
Technical Paper

Color-based Vision Tracking for an Astronaut EVA Assist Vehicle

2001-07-09
2001-01-2135
Scenarios for a manned mission to Mars call for astronaut extravehicular activity teams to be accompanied by semi-autonomous rovers. These rovers must be able to safely follow the astronauts over a variety of terrain with minimal assistance. We propose a color-based visual tracking system as a high-speed robust sensory approach for astronaut following and present a quantitative analysis of its accuracy over a spectrum of astronaut motion profiles. To evaluate performance, we provide astronaut motion profiles to a simulator and record actual and perceived target location. We characterize tracking accuracy as a function of rover-astronaut separation distance and astronaut speed and heading. Future plans include closed-loop control of the rover based on visual feedback, rover motion simulation, and target re-acquisition algorithms.
X