Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Microwave Enhanced Freeze Drying of Solid Waste

2007-07-09
2007-01-3266
A Microwave Enhanced Solid Waste Freeze Drying Prototype system has been developed for the treatment of solid waste materials generated during extended manned space missions. The system recovers water initially contained within wastes and stabilizes the residue with respect to microbial growth. Dry waste may then be safely stored or passed on to the next waste treatment process. Operating under vacuum, microwave power provides the energy necessary for sublimation of ice contained within the waste. This water vapor is subsequently collected as relatively pure ice on a Peltier thermoelectric condenser as it travels en route to the vacuum pump. In addition to stabilization via dehydration, microwave enhanced Freeze Drying reduces the microbial population (∼90%) in the waste.
Technical Paper

Mesoporous Oxide Supported Catalysts for Low Temperature Oxidation of Dissolved Organics in Spacecraft Wastewater Streams

2004-07-19
2004-01-2405
Novel mesoporous bimetallic oxidation catalysts are described, which are currently under development for the deep oxidation (mineralization) of aqueous organic contaminants in wastewater produced on-board manned spacecraft, and lunar and planetary habitats. The goal of the ongoing development program is to produce catalysts capable of organic contaminant mineralization near ambient temperature. Such a development will significantly reduce Equivalent System Mass (ESM) for the ISS Water Processor Assembly (WPA), which must operate at 135°C to convert organic carbon to CO2 and carboxylic acids. Improvements in catalyst performance were achieved due to the unique structural characteristics of mesoporous materials, which include a three-dimensional network of partially ordered interconnected mesopores (5-25 nm).
Technical Paper

Development and Testing of a Microwave Powered Solid Waste Stabilization and Water Recovery System

2006-07-17
2006-01-2182
A Microwave Powered Solid Waste Stabilization and Water Recovery Prototype system has been developed for the treatment of solid waste materials generated during extended manned space missions. The system recovers water initially contained within wastes and stabilizes the residue with respect to microbial growth. Dry waste may then be safely stored or passed on to the next waste treatment process. Using microwave power, water present in the solid waste is selectively and rapidly heated. Liquid phase water flashes to steam and superheats. Hot water and steam formed in the interior of waste particles create an environment that is lethal to bacteria, yeasts, molds, and viruses. Steam contacts exposed surfaces and provides an effective thermal kill of microbes, in a manner similar to that of an autoclave. Volatilized water vapor is recovered by condensation.
Technical Paper

Ambient Temperature Removal of Problematic Organic Compounds from ISS Wastewater

2002-07-15
2002-01-2534
Small, highly polar organics such as urea, alcohols, acetone, and glycols are not easily removed by the International Space Station's Water Recovery System. The current design utilizes the Volatile Removal Assembly (VRA) which operates at 125°C to catalytically oxidize these contaminants. Since decomposition of these organics under milder conditions would be beneficial, several ambient temperature biocatalytic and catalytic processes were evaluated in our laboratory. Enzymatic oxidation and ambient temperature heterogeneous catalytic oxidation of these contaminants were explored. Oxidation of alcohols proceeded rapidly using alcohol oxidase; however, effective enzymes to degrade other contaminants except urea were not found. Importantly, both alcohols and glycols were efficiently oxidized at ambient temperature using a highly active, bimetallic noble metal catalyst.
X