Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

On-Orbit and Ground Performance of the PGBA Plant Growth Facility

1997-07-01
972366
PGBA, a plant growth facility developed for commercial space biotechnology research, successfully grew a total of 50 plants (6 species) during 10 days aboard the Space Shuttle Endeavor (STS-77), and has reflown aboard the Space Shuttle Columbia (STS-83 for 4 days and STS-94 for 16 days) with 55 plants and 10 species. The PGBA life support system provides atmospheric, thermal, and humidity control as well as lighting and nutrient supply in a 33 liter microgravity plant growth chamber. The atmosphere treatment system removes ethylene and other hydrocarbons, actively controls CO2 replenishment, and provides passive O2 control. Temperature and humidity are actively controlled.
Technical Paper

Microgravity Root Zone Hydration Systems

2000-07-10
2000-01-2510
Accurate root zone moisture control in microgravity plant growth systems is problematic. With gravity, excess water drains along a vertical gradient, and water recovery is easily accomplished. In microgravity, the distribution of water is less predictable and can easily lead to flooding, as well as anoxia. Microgravity water delivery systems range from solidified agar, water-saturated foams, soils and hydroponics soil surrogates including matrix-free porous tube delivery systems. Surface tension and wetting along the root substrate provides the means for adequate and uniform water distribution. Reliable active soil moisture sensors for an automated microgravity water delivery system currently do not exist. Surrogate parameters such as water delivery pressure have been less successful.
Technical Paper

Innovative Schematic Concept Analysis for a Space Suit Portable Life Support Subsystem

2006-07-17
2006-01-2201
Conceptual designs for a space suit Personal Life Support Subsystem (PLSS) were developed and assessed to determine if upgrading the system using new, emerging, or projected technologies to fulfill basic functions would result in mass, volume, or performance improvements. Technologies were identified to satisfy each of the functions of the PLSS in three environments (zero-g, Lunar, and Martian) and in three time frames (2006, 2010, and 2020). The viability of candidate technologies was evaluated using evaluation criteria such as safety, technology readiness, and reliability. System concepts (schematics) were developed for combinations of time frame and environment by assigning specific technologies to each of four key functions of the PLSS -- oxygen supply, waste removal, thermal control, and power. The PLSS concepts were evaluated using the ExtraVehicular Activity System Sizing Analysis Tool, software created by NASA to analyze integrated system mass, volume, power and thermal loads.
Technical Paper

Fluorocarbon and PTFE Thermodegradation and Contamination Modeling in a Space Habitat

1993-07-01
932146
The products of thermodegradation of fluorocarbon polymers (found in electrical insulation) will be toxic to space habitat crews, and the monitoring and detection of such contaminants are important to space environmental health. Experiments are therefore being performed on the thermodegradation of a liquid perfluoroalkane mixture (consisting of perfluorohexanes, C6F14, and −5% perfluoropentane, C5F12), similar in structure to polytetrafluoroethylene (PTFE - Teflon), in atmospheres of varying oxygen concentration. PTFE is a common material used on space vehicles for insulation of wires. When PTFE is thermally degraded, such as from the overheating of a wire and subsequent smoldering of the insulation, it may produce toxic compounds ranging from carbonyl fluoride and hydrogen fluoride through perfluorinated aromatic compounds to ultrafine particles.
Technical Paper

Contaminant Distribution and Accumulation in Water Recycle Systems

1992-07-01
921360
Water reuse is essential for long duration space missions. However, water recycle systems also provide a habitat for microorganisms and allow accumulation of chemical compounds which may be acutely or chronically toxic to mission crew members. Contaminant fate and accumulation in closed-loop water recycle systems is being investigated at the University of Colorado and Martin Marietta as part of the activities of the Center for Space Environmental Health (CSEH), a NASA Specialized Center of Research and Training (NSCORT). The water contaminant distribution research uses a scaled-down physical model of a water (shower, laundry, urine and/or condensate) recycle system to analyze for and model four “indicator” contaminants: viruses and bacteria, nitrogen species, and selected organic and inorganic compounds. The water recycle test bed is comprised of five or more individual water treatment processes linked in a closed loop, and spiked with chemical and biological contaminants.
Technical Paper

Atmosphere Composition Control of Spaceflight Plant Growth Growth Chambers

2000-07-10
2000-01-2232
Spaceflight plant growth chambers require an atmosphere control system to maintain adequate levels of carbon dioxide and oxygen, as well as to limit trace gas components, for optimum or reproducible scientific performance. Recent atmosphere control anomalies of a spaceflight plant chamber, resulting in unstable CO2 control, have been analyzed. An activated carbon filter, designed to absorb trace gas contaminants, has proven detrimental to the atmosphere control system due to its large buffer capacity for CO2. The latest plant chamber redesign addresses the control anomalies and introduces a new approach to atmosphere control (low leakage rate chamber, regenerative control of CO2, O2, and ethylene).
Technical Paper

An Assessment of Pressure/Oxygen Ratios for a Mars Base

1993-07-01
932147
It is well known that selection of the pressure/oxygen ratio for a human space habitat is a critical decision for the well-being and mission performance of astronauts. It has also been noted how this ratio affects the requirement for pre- and post-breathing and the type and flexibility of EVA/EHA astronaut suits. However, little attention has been paid to how these issues interact with various mission design strategies. Using the first manned mission to Mars as a baseline mission, we have separated the mission into its component parts as it relates to habitat type (i.e., the Earth-Mars interplanetary vehicle, the ascent/descent vehicle, the base, human rover vehicles, etc.) and have determined the oxygen resupply requirements for each part as they reflect a mission design strategy. These component parts form a matrix where duration of stay, loss of oxygen due to leakage and usage, and oxygen resupply needs are calculated.
X