Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of a Smart Secondary Microscopic Battery

2002-10-29
2002-01-3244
MEMS (Microelectromechanical Systems), as a technology, represents a new paradigm for integration of computational functions with elements that interact with the physical world. By combining mechanical moving parts with more traditional integrated circuits, new capabilities exist for sensing/actuating systems not previously possible. In developing MEMS, fundamental issues of packaging and fabrication have required considerable attention. An analogous group of technologies are emerging which combine chemically reacting elements with computational functions. These might be referred to as Microelectrochemical Systems. Examples include chemical sensors and actuators, as well as on-board chemical sources of energy, such as microscopic batteries, fuel cells, energy harvesters. The merger of chemical systems and computational capabilities requires us to address a host of issues such as packaging and fabrication, as was (and is) needed with MEMS.
Journal Article

An Investigation into the Tradespace of Advanced Wide-Band Gap Semiconductor Devices in a Full-Bridge DC-DC Converter

2016-09-20
2016-01-1990
In aerospace applications, it is important to have efficient, small, affordable, and reliable power conversion units with high power density to supply a wide range of loads. Use of wide-band gap devices, such as Silicon Carbide (SiC) and Gallium Nitride (GaN) devices, in power electronic converters is expected to reduce the device losses and need for extensive thermal management systems in power converters, as well as facilitate high-frequency operation, thereby reducing the passive component sizes and increasing the power density. A performance comparison of state-of-the art power devices in a 10 kW full-bridge dc-dc buck converter operating in continuous conduction mode (CCM) and at switching frequencies above 100 kHz will be presented in this manuscript. Power devices under consideration are silicon (Si) IGBT with Si antiparallel diodes, Si IGBT with SiC antiparallel diodes, Si MOSFETs, SiC MOSFETs, and enhancement-mode GaN transistors.
X