Refine Your Search

Topic

Search Results

Standard

Aircraft Brake Temperature Monitoring

2021-10-28
CURRENT
ARP6812
This SAE Aerospace Recommended Practice (ARP) provides recommendations for the function, design, construction, and testing of an on-aircraft Brake Temperature Monitoring System (BTMS), sometimes referred to as a Brake Temperature Indication System (BTIS). NOTE: This ARP does not address: Cockpit ergonomics and Aircraft operating procedures. Various handheld methods of temperature sensing or readouts, as these are not associated with transport aircraft during normal operation. Temperature sensitive paints as a means to indicate exceedance of a landing gear axle temperature threshold due to brake temperature.
Standard

Aircraft Tire Inflation-Deflation Equipment

2008-06-16
HISTORICAL
AS1188
This specification covers minimum design and test requirements for aircraft tire inflation-deflation equipment for use on all types of aircraft. It shall be the responsibility of the airframe manufacturer to determine the compatibility of the requirement with the applicable aircraft and to specify requirements in excess of these minimums as necessary.
Standard

Assessment of Aircraft Wheel Sealing Systems

2020-09-17
CURRENT
ARP5146
This SAE Aerospace Recommended Practice (ARP) is intended to provide guidance on verifying the integrity of inflation pressure sealing systems of aircraft wheel/tire assemblies.
Standard

BRAKE DYNAMICS

2006-03-17
HISTORICAL
AIR1064C
The landing gear is a complex multi-degree of freedom dynamic system and may encounter vibration problems induced by braking action. The vibratory modes can be induced by several frictional characteristics and brake design features. These should be assessed during the design concept and verified during the development of the hardware. This SAE Aerospace Information Report (AIR) has been prepared by a panel of the A-5A Subcommittee to present an overview of the landing gear system problems associated with aircraft brake dynamics and the approaches to the solution of these problems. In addition, facilities available for test and evaluation are presented and discussed.1
Standard

Carbon Brake Contamination and Oxidation

2016-04-12
CURRENT
AIR5490A
This document provides information on contamination and its effects on brakes having carbon-carbon composite friction materials (carbon). Carbon is hygroscopic and porous, and therefore readily absorbs liquids and contaminants. Some of the contaminants can impact intended performance of the brake. This document is intended to raise awareness of the effects of carbon brake contamination and provide information on industry practices for its prevention. Although not addressed in this report, contaminants can cause problems with other landing system components including tires.
Standard

Compilation of Freezing Brake Experience and Potential Designs and Operating Procedures to Prevent Its Occurrence

2016-05-24
CURRENT
AIR4762A
This Aerospace Information Report (AIR) describes conditions under which freezing (frozen) brakes can occur and describes operating procedures which have been used to prevent or lessen the severity or probability of brake freezing. This document also identifies design features that some manufacturers implement to minimize the occurrence of freezing brakes. This document is not an Aerospace Recommended Practice (ARP) and therefore does not make recommendations based on a consensus of the industry. However, part of this document’s purpose is to describe the design and operational practices that some are using to minimize the risk of frozen brakes. NOTE: The following information is based upon experience gained across a wide-range of aircraft types and operational profiles, and should NOT take precedence over Aircraft Flight Manual or Flight Operations Procedures.
Standard

Disposition of Damaged Wheels Involved in Accidents/Incidents

2020-09-17
CURRENT
ARP5600
This SAE Aerospace Recommended Practice (ARP) establishes a procedure for disposition of aircraft wheels that have been involved in accidents/incidents or have been exposed to overheat conditions or overload conditions from loss of adjacent tire pressure (paired wheels) or wheel tie bolts.
Standard

MAINTAINABILITY RECOMMENDATIONS FOR AIRCRAFT WHEELS & BRAKES

1993-04-01
HISTORICAL
ARP813
This document suggests the maintainability features which should be considered in the design of aircraft wheels and brakes. The effect on such factors as cost, weight, reliability, and compatibility with other systems should be considered before incorporation of any of these features in the design.
Standard

MAINTAINABILITY RECOMMENDATIONS FOR AIRCRAFT WHEELS AND BRAKES

1993-04-01
HISTORICAL
ARP813A
This ARP suggests the maintainability features which should be considered in the design of aircraft wheels and brakes. The effect on such factors as cost, weight, reliability, and compatibility with other systems should be considered before incorporation of any of these features in the design.
X