Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Thermal Management System Concept with an Autonomous Air-Cooled System

2014-09-16
2014-01-2213
Electrical power management is a key technology in the AEA (All-Electric Aircraft) system, which manages the supply and demand of the electrical power in the entire aircraft system. However, the AEA system requires more than electrical power management alone. Adequate thermal management is also required, because the heat generated by aircraft systems and components increases with progressive system electrification, despite limited heat-sink capability in the aircraft. Since heat dissipation from power electronics such as electric motors, motor controllers and rectifiers, which are widely introduced into the AEA, becomes a key issue, an efficient cooling system architecture should be considered along with the AEA system concept. The more-electric architecture for the aircraft has been developed; mainly targeting reduced fuel burn and CO2 emissions from the aircraft, as well as leveraging ease of maintenance with electric/electronic components.
Technical Paper

System Concept Study of Electrical Management for Onboard Systems

2014-09-16
2014-01-2200
With the growth in onboard electrification referred to the movement of the More Electric Aircraft, or MEA, and constant improvement in ECO standards, aircraft electricity load has continued to soar. The airline and authors have discussed the nature of future aircraft systems in the next two decades, which envisages the further More Electric Aircraft or the All-Electric Aircraft, or AEA, concept helping provide some effective aviation improvements. The operators, pilots and maintenance crews anticipate improved operability, ease of maintenance and fuel saving, while meetings depends for high reliability and safety by electrification. As part of initial progress, the authors approach the methodology of energy management for aircraft systems.
Technical Paper

Power Management System for the Electric Taxiing System Incorporating the More Electric Architecture

2013-09-17
2013-01-2106
With airlines increasingly directing their attention to operating costs and environmental initiatives, the More Electric Architecture for Aircraft and Propulsion (MEAAP) is emerging as a viable solution for improved performance and eco-friendly aircraft operations. This paper focuses on electric taxiing that does not require the use of jet engines or the auxiliary power unit (APU) during taxiing, either from the departure gate to take-off or from landing to the arrival gate. Many researchers and engineers are considering introducing electric taxiing systems as part of efforts to improve airport conditions. To help cut aircraft emissions at airports, MEAAP seeks to introduce an electric taxiing system that would reduce the duration for which engines and APUs operate while on the ground. Given this goal, the aircraft electrical system deployed for use at airports must rely on a power source other than the jet engines or APU.
Technical Paper

More Electric Architecture for Engine and Aircraft Fuel System

2013-09-17
2013-01-2080
The authors are currently developing the MEE (More Electric Engine) electric motor-driven fuel pump system for aircraft engines. The electric fuel system will contribute to the reduction of engine power extraction to drive the fuel pump; thus, an improvement in engine efficiency will be expected. In addition, the engine system reliability will be improved by introducing advanced electric architecture, and the reduction of hydraulic components, fuel tubes and fittings is effective to enhance the maintainability of the engine. Although it is considered that the MEE electric fuel system will realize several benefits, there are technical challenges to introduce such new electric system into aircraft. One of the key technical challenges is to construct a redundant and simplified electric fuel system, because continuous operation of the fuel pump system is crucial for aircraft safety.
Technical Paper

Fuel Pump System Configuration for the More Electric Engine

2011-10-18
2011-01-2563
This paper describes study for fuel pump system configuration which is suitable for the MEE (More Electric Engine) system. The MEE is a new engine system concept which intends engine efficiency improvement, which results in a reduction of engine fuel burn and CO₂ emissions from aircraft. Final configuration of the MEE will contain various engine systems, such as fuel system, oil system and electric generating system, but we focus on high efficiency fuel systems as a first step of the MEE development. The MEE is an advanced engine control technology utilizing recent innovations in electric motors and power electronics and replacing conventional engine accessories, such as AGB-driven pumps and hydraulic actuators with electric motor-driven pumps and EMAs (Electro-Mechanical Actuators), which are powered by generators. Because fuel pump system configuration is a key for the MEE fuel system, we conducted comparison of several pump systems and adopted a fixed displacement gear pump system.
Technical Paper

Conceptual Study of Low-Pressure Spool-Generating Architecture for More Electric Aircraft

2015-09-15
2015-01-2408
This paper will propose a novel power generating system concept including an auxiliary, backup and emergency power source. Existing aircraft employ an auxiliary power unit (APU) and a ram air turbine (RAT) for power generation besides aero-engine generators. An APU works prior to starting propulsion on the ground and as a backup power plant during flight. The RAT is activated due to the need to maintain the essential systems in the case of an emergency situation. Both systems are optimized on conventional aircraft in which hydraulic, pneumatic and electric systems are supplied for control and equipment. Although a conventional aircraft needs hydro pumps and air compressors, the coming of a new era of more-electric architecture for aircraft and propulsion will be the stimulus to improve aircraft systems [1]. In more-electric aircraft, the authors focus on the low-pressure spool generation system of aero-engines.
Technical Paper

A Motor Control Design for the More Electric Aero Engine Fuel System

2011-10-18
2011-01-2619
This paper describes a concept related to fault-tolerant design for a redundant motor control system. The design comprises components driven by an electric motor, a motor controller, and a power source, referred to as the More Electric Aero Engine (or MEE). The MEE dramatically improves the engine efficiency and reduces fuel burn and CO2 emissions. However, the MEE system must demonstrate that it can ensure engine safety and reliability before it can take the place of conventional systems. The proposed unique redundant system presented in this paper incorporates Active-Active control and multi-winding motors. Engine fuel flow is controlled by the motor speed control of the MEE electric fuel pump, which uses this redundant system. This concept provides a solution for helping to ensure engine safety and reliability, since it enables a complete one-fail operational engine fuel system for the MEE. Another key technology for the MEE system involves a power generating solution.
X