Refine Your Search

Search Results

Viewing 1 to 9 of 9
Standard

Twin Engine Helicopter Power Requirements

1997-06-01
CURRENT
AIR1850A
This SAE Aerospace Information Report (AIR) defines the power spectrum during normal and emergency operations of a twin engine helicopter and thereby postulates suitable power plant rating structures. This document does not address the power requirements for single engine helicopters or those with more than two engines.
Standard

PERFORMANCE OF LOW PRESSURE RATIO EJECTORS FOR ENGINE NACELLE COOLING

1989-05-01
HISTORICAL
AIR1191
A general method for the preliminary design of a single, straight-sided, low subsonic ejector is presented. The method is based on the information presented in References 1, 2, 3, and 4, and utilizes analytical and empirical data for the sizing of the ejector mixing duct diameter and flow length. The low subsonic restriction applies because compressibility effects were not included in the development of the basic design equations. The equations are restricted to applications where Mach numbers within the ejector primary or secondary flow paths are equal to or less than 0.3.
Standard

Helicopter Powerplant Corrosion Protection

2023-02-06
CURRENT
AIR4495
This SAE Aerospace Information Report (AIR) describes the different aspects of corrosion on helicopter powerplants, on the components that are affected, and the subsequent consequences on the helicopter, engine durability, performance, and dependability. Guidelines that minimize corrosion during the design stage and during service operation are also discussed.
Standard

Helicopter Mission Definition

2022-02-23
WIP
ARP1352A
The purpose of this recommended practice is to establish a standard format for the presentation of helicopter mission data, which will provide data required to establish airframe and/or engine component life.
Standard

Helicopter Mission Definition

1997-12-01
CURRENT
ARP1352
The purpose of this recommended practice is to establish a standard format for the presentation of helicopter mission data, which will provide data required to establish airframe and/or engine component life.
Standard

ENGINE EXHAUST SYSTEM DESIGN CONSIDERATIONS FOR ROTORCRAFT

2021-03-11
CURRENT
ARP4056
Turbine engines installed in rotorcraft have an exhaust system that is designed and produced by the aircraft manufacturer. The primary function of the exhaust system is to direct hot exhaust gases away from the airframe. The exhaust system may consist of a tailpipe, which is attached to the engine, and an exhaust fairing, which is part of the rotorcraft. The engine manufacturer specifies a baseline "referee" tailpipe design, and guaranteed engine performance is based upon the use of the referee tailpipe and tailpipe exit diameter. The configuration used on the rotocraft may differ from the referee tailpipe, but it is intended to minimize additional losses attributed to the installation. This Aerospace Recommended Practice (ARP) describes the physical, functional, and performance interfaces to be considered in the design of the aircraft exhaust system.
X