Refine Your Search

Topic

Search Results

Journal Article

Water Body Survey, Inspection, and Monitoring Using Amphibious Hybrid Unmanned Aerial Vehicle

2021-02-04
Abstract Water quality monitoring is needed for the effective management of water resources. Periodic sampling and regular inspection/analysis allow one to classify water and identify changes or trends in water quality over time. This article presents a novel concept of an Amphibious Hybrid Unmanned Aerial Vehicle (AHUAV) that can operate in air and water for rapid water sampling, real-time water quality analysis, and water body management. A methodology using the developed AHUAV system for water body management has also been proposed for an easier and effective way of monitoring water bodies using advanced drone technologies. Using drones for water body management can be a cost-effective and efficient way of carrying out regular inspections and continual monitoring.
Journal Article

Temperature and Consumed Energy Predictions for Air-Cooled Interior Permanent Magnet Motors Driving Aviation Fans—Part 1: Mathematical Analytical Solutions for Incompressible Air Cases

2022-04-13
Abstract The increase in worldwide awareness of environmental issues has necessitated the air transport industry to drastically reduce carbon dioxide emissions. To meet this goal, one solution is the electrification of aircraft propulsion systems. In particular, single-aisle aircraft with partial turboelectric propulsion with approximately 150 passenger seats in the 2030s are the focus. To develop a single-aisle aircraft with partial turboelectric propulsion, an air-cooled interior permanent magnet (IPM) motor with an output of 2 MW is desired. In this article, mathematical system equations that describe heat transfer inside the target air-cooled IPM motor are formulated, and their mathematical analytical solutions are obtained.
Journal Article

Technological Stability of the Liner in a Separable Metal Composite Pressure Vessel

2020-04-21
Abstract The article considers one of the possible mechanisms of loading the solidity of a cylindrical metal composite high-pressure vessel (MC HPV). This mechanism manifests itself as delamination of a thin-walled metal shell (liner) from a more rigid composite shell causing local buckling. A similar effect can be detected in the manufacturing process of MC HPV, when the composite shell is formed by winding with tension a carbon fiber-reinforced plastic tape on the liner. Pressure transfer from the composite shell to the liner is carried out by the method of temperature analogy, that is, by cooling the composite shell, thermally insulated from the liner. To solve the problem of externally confined liner local buckling an approach is proposed, which is based on three points: the introduction of local technological deviations inherent in actual structures, the determination of the general stress-strain state, and a real-time deforming.
Journal Article

Supervised Learning Classification Applications in Fault Detection and Diagnosis: An Overview of Implementations in Unmanned Aerial Systems

2022-08-18
Abstract Statistical machine learning classification methods have been widely used in the fault detection analysis in several engineering domains. This motivates us to provide in this article an overview on the application of these methods in the fault diagnosis strategies and also their successful use in unmanned aerial vehicles (UAVs) systems. Different existing aspects including the implementation conditions, offline design, and online computation algorithms as well as computation complexity and detection time are discussed in detail. Evaluation and validation of these aspects have been ensured by a simple demonstration of the basic classification methods and neural network techniques in solving the fault detection and diagnosis problem of the propulsion system failure of a multirotor UAV. A testing platform of an Hexarotor UAV is completely realized.
Journal Article

Study of Temperature Distribution and Parametric Optimization during FSW of AA6082 Using Statistical Approaches

2019-02-01
Abstract In this article, Al-Mg-Si-Mn alloy (AA6082) is butt joined by employing friction stir welding (FSW). The mechanical and metallurgical properties of joints are analyzed by conducting tensile and microhardness testing, respectively. To measure the temperature at different locations, eight thermocouples (L-shaped k-type) are placed at equal distance from the centerline. Least square method attempts to calculate the temperature at the centerline of joints. The process parameters are also optimized using Taguchi’s five-level experimental design. The optimum process parameters are determined, employing ultimate tensile strength (UTS) as a response parameter. A statistical test “analysis of variance” is used to check the adequacy of the model. It has been observed that rotational speed and feed rate are the predominant factors for UTS and microhardness.
Journal Article

Study of Statistical Narrow-Band Models for Infrared Signature of an Aeroengine Exhaust Plume in Mid-wave Infrared and Short-Wave Infrared Band

2022-04-20
Abstract An aeroengine exhaust plume is one of the important sources of infrared (IR) signature in the 3-5 μm and the 2-3 μm bands. Analysis, characterization, and modeling of the exhaust plume IR emission are needed for insight into its role in aircraft survivability against IR-guided missiles. The IR signature estimation of aeroengine exhaust needs estimation of radiative properties of absorbing-emitting exhaust gases, e.g., carbon dioxide (CO2) and water vapor (H2O). The radiative properties of the gases can be estimated by a mathematical model with a spectroscopic database of these gases. Low-Resolution Transmission (LOWTRAN), Moderate-Resolution Transmission (MODTRAN), High-Resolution Transmission (HITRAN), and High-Temperature Transmission (HITEMP) are some commonly used spectroscopic databases. This study compares Statistical Narrowband (SNB) models with the various other mathematical models used for the estimation of radiative properties of exhaust gases.
Journal Article

Response Surface Methodology (RSM) in Optimization of Performance and Exhaust Emissions of RON 97, RON 98, and RON 100 (Motor Gasoline) and AVGAS 100LL (Aviation Gasoline) in Lycoming O-320 Engine

2019-08-19
Abstract Federal Aviation Administration (FAA)’s 20 years of research and development with 200 unleaded blends and full-scale engine tests on 45 high-octane unleaded blends has not found a “drop-in” unleaded replacement for aviation gasoline (AVGAS) 100 low lead (100LL) fuel. In this study, analysis of compatibility via optimization of Lycoming O-320 engine fuelled with RON 97, RON 98, RON 100, and AVGAS was conducted using the Response Surface Methodology (RSM). Test fuels were compositionally characterized based on Gas Chromatography (GC) analysis and were categorized based on types of Hydrocarbon (HC). Basic fuel properties of fuels in this research were analyzed and recorded. For optimization analysis, engine speed and fuel were considered as the input parameters.
Journal Article

Performance and Emission Characteristics of a Gas Turbine Engine Burning Soap-Derived Biokerosene/Jet A-1 Blends

2020-04-29
Abstract There has been an increased interest as regards the use of biofuels in aviation gas turbine engines due to global efforts to reduce greenhouse gas emissions along with fluctuating jet fuel prices. This work researches the use of soap-derived biokerosene (SBK) in aircraft engines. SBK is a promising biofuel option for emerging tropical countries as its production requires a relatively simple technology, and its feedstock sources are abundant in these countries. Blends of Jet A-1 with up to 20 vol.% SBK were tested on a 1S/60 Rover gas turbine engine over a range of brake powers to measure engine performance and emissions. The results were then compared to those of pure Jet A-1. It shows that the engine running on SBK/Jet A-1 blends and pure Jet A-1 have almost similar engine performance parameters including engine efficiency, specific fuel consumption (SFC), turbine inlet temperature (TIT), and exhaust gas temperature (EGT).
Journal Article

Performance Study of Novel Compressor Blades in a Two-Dimensional Cascade—Transonic Regime

2021-09-07
Abstract Passengers would always like to reach their destinations with minimum commute time. Generating a higher thrust is a necessity. This implies that the turbomachinery associated with the power plant has to rotate faster and with higher efficiencies. However, high rotational speeds, mainly in the transonic regime, often lead to boundary layer separation, shocks, compressor stall, and surge. The current investigation is an attempt to reduce the abovementioned phenomena. It involves the performance study of a smoothened controlled diffusion airfoil (CDA) blade that has been optimized by “Multi-Objective Genetic Algorithm” (MOGA) by altering maximum camber location and stagger angle. Inlet pressure is varied from 15 kPa to 30 kPa and the angle of attack ranging from 40.4° to 56.4°. C48-S16-BS1 is validated and considered as the baseline profile, and all other blades are collated to this.
Journal Article

Particle Swarm Optimization with Required Time of Arrival Constraint for Aircraft Trajectory

2020-11-20
Abstract Global warming has motivated the aeronautical industry to develop new technologies that will reduce polluting emissions. A direct way to achieve this goal is to reduce fuel consumption. Reference trajectory optimization contributes to this goal by guiding aircraft to zones where meteorological conditions are favorable to execute their required missions and thereby to reduce flight costs. In this article, the reference trajectory was optimized in terms of geographical position, altitude, and speed, by taking into account a Required Time of Arrival (RTA) constraint and weather conditions. The algorithm assumes that there is no traffic and that the aircraft can fly anywhere in the search space. The search space was modeled in the form of a unidirectional weighted graph, fuel burn was computed using a numerical model, and the weather forecast was taken into account.
Journal Article

Optimizing Intralogistics in an Engineer-to-Order Enterprise with Job Shop Production: A Case Study of the Control Cabinet Manufacturing

2024-01-16
Abstract This study underscores the benefits of refining the intralogistics process for small- to medium-sized manufacturing businesses (SMEs) in the engineer-to-order (ETO) sector, which relies heavily on manual tasks. Based on industrial visits and primary data from six SMEs, a new intralogistics concept and process was formulated. This approach enhances the value-added time of manufacturing workers while also facilitating complete digital integration as well as improving transparency and traceability. A practical application of this method in a company lead to cutting its lead time by roughly 11.3%. Additionally, improved oversight pinpointed excess inventory, resulting in advantages such as reduced capital needs and storage requirements. Anticipated future enhancements include better efficiency from more experienced warehouse staff and streamlined picking methods. Further, digital advancements hold promise for cost reductions in administrative and supportive roles.
Journal Article

Optimization of Takeaway Delivery Based on Large Neighborhood Search Algorithm

2023-11-09
Abstract The drone logistics distribution method, with its small size, quick delivery, and zero-touch, has progressively entered the mainstream of development due to the global epidemic and the rapidly developing global emerging logistics business. In our investigation, a drone and a delivery man worked together to complete the delivery order to a customer’s home as quickly as possible. We realize the combined delivery network between drones and delivery men and focus on the connection and scheduling between drones and delivery men using existing facilities such as ground airports, unmanned stations, delivery men, and drones. Based on the dynamic-vehicle routing problem model, the establishment of a delivery man and drone with a hybrid model, in order to solve the tarmac unmanned aerial vehicle for take-out delivery scheduling difficulties, linking to the delivery man and an adaptive large neighborhood search algorithm solves the model.
Journal Article

Numerical Investigation of Effects of G-Jitter on Buoyant Laminar Diffusion Flame

2020-05-20
Abstract Numerical prediction of a confined, co-flowing, laminar jet diffusion flame has been investigated under sinusoidal “g-jitter” to describe the flame structure; this type of flame-body force interaction is typical of a microgravity environment such as in the spacecraft. We introduced g-jitter in the direction orthogonal to the fuel and air inflow. We show that the lower frequencies (0.1-0.5 Hz) of sinusoidal g-jitter significantly affected the flame geometry and behavior. The majority of the flame structure was found to oscillate directly in response to the imposed g-jitter. It has also been observed that nonlinearity in the response behaviors is more prominent in the reaction zone of the flame.
Journal Article

Numerical Analysis of a Separable Metal Composite Pressure Vessel

2022-08-09
Abstract This article presents a numerical solution to the problem of delamination in a separable Metal Composite High-Pressure Vessel (MC HPV). This problem is associated with local buckling of the inner metal shell (liner) surrounded by an outer rigid composite shell. A geometrically and physically nonlinear MC HPV deformation model is constructed considering the three-dimensional stress-strain state, real-time mode, and technological deviations inherent in real vessel designs. The model combines the deformation of the vessel end domes and the cylindrical part. A unilateral constraint is believed to exist on the interface between the liner and the composite shell, allowing the liner to delaminate from the latter when bending. Calculations are performed using the finite element method in the LS-DYNA software package in a dynamic formulation. The vessel is divided into solid finite elements such as TSHELL and SOLID.
Journal Article

Nonlinear Observer for Estimating Gravity Vector and Flight Path Angles of a High-Performance Aircraft

2023-08-14
Abstract This paper proposes a nonlinear observer for the estimation of gravity vector and angles with respect to velocity vector (flight path angle, bank angle) of a high-performance aircraft. The technique is computationally simpler than the extended Kalman filter (EKF) and hence is suitable for onboard implementations when the digital flight control computer (DFCC) has computational burdens. Flight test data of a highly maneuvering flight such as wind-up turns and full rolls have been used to validate the technique.
Journal Article

Mathematical Model of Heat-Controlled Accumulator (HCA) for Microgravity Conditions

2020-01-20
Abstract It is reasonable to use a two-phase heat transfer loop (TPL) in a thermal control system (TCS) of spacecraft with large heat dissipation. One of the key elements of TPL is a heat-controlled accumulator (HCA). The HCA represents a volume which is filled with vapor and liquid of a single working fluid without bellows. The pressure in a HCA is controlled by the heater. The heat and mass transfer processes in the HCA can proceed with a significant nonequilibrium. This has implications on the regulation of TPL. This article presents a mathematical model of nonequilibrium heat and mass transfer processes in an HCA for microgravity conditions. The model uses the equations of mass and energy conservation separately for the vapor and liquid phases. Interfacial heat and mass transfer is also taken into account. It proposes to use the convective component k for the level of nonequilibrium evaluation.
Journal Article

Investigation of Water Droplet Size Distribution in Conventional and Sustainable Aviation Turbine Fuels

2022-05-17
Abstract Water droplet size variation has been established in the literature as an important variable that influences the behavior and characteristics of water in fuel emulsion. However, with the growing demand for sustainable aviation fuels (SAF), no data is available that shows how these fuels will affect the size of dispersed water droplets and their frequency distribution. To address this lack of knowledge, this study explores and presents experimental results on the characterization of dispersed water droplets in alternative fuels and Jet A-1 fuel under dynamic conditions. The alternative fuels comprised of two fully synthetic fuels, two fuels synthesized from bio-derived materials, and one bio-derived fuel. The data and statistics presented reveal that water droplet frequency and size distribution are sensitive to changes in fuel composition.
Journal Article

Investigation of In-Cylinder Pressure Measurement Methods within a Two-Stroke Spark Ignition Engine

2023-05-12
Abstract This work describes an investigation of measurement techniques for the indicated mean effective pressure (IMEP) on a 55 cc single-cylinder, 4.4 kW, two-stroke, spark ignition (SI) engine intended for use on Group 1 and Group 2 remotely piloted aircraft (RPAs). Three different sensors were used: two piezoelectric pressure transducers (one flush mount and one measuring spark plug) for measuring in-cylinder pressure and one capacitive sensor for determining the top dead center (TDC) position of the piston. The effort consisted of three objectives: to investigate the merits of a flush mount pressure transducer compared to a pressure transducer integrated into the spark plug, to perform a parametric analysis to characterize the effect of the variability in the engine test bench controls on the IMEP, and to determine the thermodynamic loss angle for the engine.
Journal Article

Investigation of Hot Corrosion Behavior on QE22A-Magnesium Silver Alloy through Steaming Method

2022-03-03
Abstract The hot corrosion studies for the die-casted magnesium (Mg) silver (Ag) alloys are carried out through the steam heating route. The Magnesium Silver (QE22A) alloy is fixed under the top lid of the pressure cooker (2 liters) and filled with water and 5% salt (NaCl) solution. The specimens are treated with different time intervals (10, 20, and 30 minutes), with the steam temperature maintained at 100°C around the specimen. The results showed an increase in the corrosion rate with the increase in the steaming time. Further, after the specimens have cooled down to room temperature, similar experiments are repeated for the second and third cycles. Here the formation of the oxide layers over the specimen has reduced the corrosion rate. The structural, surface study was carried out through scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive spectroscopy (EDS) to know the corrosion behavior on the specimen.
Journal Article

Infrared Signature of Fixed and Variable Area C-D Nozzle of Aircraft Engine

2023-01-02
Abstract The use of converging-diverging (C-D) variable area nozzle (VAN) in military aeroengines is now common, as it can give optimal expansion and control over engine back pressure, for a wide range of engine operations. At higher main combustion temperatures (desired for supercruise), an increase in the nozzle expansion ratio is needed for optimum performance. But changes in the nozzle throat and exit areas affect the visibility of engine hot parts as the diverging section of the nozzle is visible for a full range of view angle from the rear aspect. The solid angle subtended by engine hot parts varies with change in visibility, which affects the aircraft infrared (IR) signature from the rear aspect. This study compares the performances of fixed and variable area nozzles (FAN and VAN) in terms of engine thrust and IR signature of the engine exhaust system in the boresight for the same increase in combustion temperature.
X