Refine Your Search

Topic

Search Results

Journal Article

Water Body Survey, Inspection, and Monitoring Using Amphibious Hybrid Unmanned Aerial Vehicle

2021-02-04
Abstract Water quality monitoring is needed for the effective management of water resources. Periodic sampling and regular inspection/analysis allow one to classify water and identify changes or trends in water quality over time. This article presents a novel concept of an Amphibious Hybrid Unmanned Aerial Vehicle (AHUAV) that can operate in air and water for rapid water sampling, real-time water quality analysis, and water body management. A methodology using the developed AHUAV system for water body management has also been proposed for an easier and effective way of monitoring water bodies using advanced drone technologies. Using drones for water body management can be a cost-effective and efficient way of carrying out regular inspections and continual monitoring.
Journal Article

Vertical Takeoff and Landing Aircraft, Vertical Takeoff and Landing Ground Effects

2020-08-20
Abstract The ground-effect problems of loss of thrust and fountain-effect instabilities are quantified. Experiments to control and augment ground-effect lift and stability are presented, including jet momentum reflection and fountain redirection using various types of internal and external underbody ventral strakes. By strategically designing the vertical takeoff and landing (VTOL) ventral surface, reflection of the impinging fountain momentum is possible so that instead of losing 10% thrust while in ground-effect, remarkably, thrust is augmented 10% or more to a considerable height above the ground, in addition to stabilizing random pitch and roll moments caused by fountain instability.
Journal Article

Using Numerical Simulation to Obtain Length of Constant Area Section in Scramjet Combustor

2020-03-16
Abstract Constant area section length downstream to the fuel injection point is a crucial dimension of scramjet duct geometry. It has a major contribution in creating the maximum effective pressure inside the combustor that is required for propulsion. The length is limited by the thermal choking phenomenon, which occurs when heat is added in a flow through constant area duct. As per theory, to avoid thermal choking the constant area section length depends upon the inlet conditions and the rate of heat addition. The complexity related to mixing and combustion process inside the supersonic stream makes it difficult to predict the rate of heat addition and in turn the length. Recent efforts of simulating the reacting flow inside scramjet combustors are encouraging and can be useful in this regard. The presented work attempts to use simulation results of scramjet combustion for predicting the constant area section length for a typical scramjet combustor.
Journal Article

Understanding the Impact of Standardized SAE Waveform Parameter Variation on Artificial Lightning Plasma, Specimen Loading, and Composite Material Damage

2020-02-18
Abstract Previous works have established strategies to model artificial test lightning plasma with specific waveform parameters and use the predicted plasma behavior to estimate test specimen damage. To date no computational works have quantified the influence of varying the waveform parameters on the predicted plasma behavior and resulting specimen damage. Herein test standard Waveform B has been modelled and the waveform parameters of “waveform peak,” “rise time,” and “time to reach the post-peak value” have been varied. The plasma and specimen behaviors have been modelled using the Finite Element (FE) method (a Magnetohydrodynamic FE multiphysics model for the plasma, a FE thermal-electric model for the specimen). For the test arrangements modelled herein, it has been found that “peak current” is the key parameter influencing plasma properties and specimen damage.
Journal Article

Three-Dimensional Thermal Study on Lithium-Ion Batteries in a Hybrid Aircraft: Numerical and Experimental Investigations

2020-10-19
Abstract The range of an aircraft is determined by the amount of energy that its batteries can store. Today, larger batteries are used to increase the range of electric vehicles, although energy efficiency decreases as the weight of the vehicles increases. Among the elements, lithium (Li) is the lightest and has the highest electrochemical potential. Therefore, the use of Li-ion batteries is recommended for hybrid aircraft. In addition, Li-ion batteries are the most common type of battery that is used in portable electronic devices such as smartphones, tablets, and laptops. However, Li-ion batteries may explode due to temperature. Therefore, the thermal analysis of Li-ion batteries was investigated both experimentally and numerically. Li-ion batteries were connected in series (the number is 9). Noboru’s theory of heat generation was discussed in the estimation of energy data.
Journal Article

Threat Identification and Defense Control Selection for Embedded Systems

2020-08-18
Abstract Threat identification and security analysis have become mandatory steps in the engineering design process of high-assurance systems, where successful cyberattacks can lead to hazardous property damage or loss of lives. This article describes a novel approach to perform security analysis on embedded systems modeled at the architectural level. The tool, called Security Threat Evaluation and Mitigation (STEM), associates threats from the Common Attack Pattern Enumeration and Classification (CAPEC) library with components and connections and suggests potential defense patterns from the National Institute of Standards and Technology (NIST) Special Publication (SP) 800-53 security standard. This article also provides an illustrative example based on a drone package delivery system modeled in AADL.
Journal Article

The Missing Link: Aircraft Cybersecurity at the Operational Level

2020-07-25
Abstract Aircraft cybersecurity efforts have tended to focus at the strategic or tactical levels without a clear connection between the two. There are many excellent engineering tools already in widespread use, but many organizations have not yet integrated and linked them into an overarching “campaign plan” that connects those tactical actions such as process hazard analysis, threat modeling, and probabilistic methods to the desired strategic outcome of secure and resilient systems. This article presents the combined systems security engineering process (CSSEP) as a way to fill that gap. Systems theory provides the theoretical foundation on which CSSEP is built. CSSEP is structured as a control loop in which the engineering team is the controller of the design process. The engineering team needs to have an explicit process model on how systems should be secured, and a control algorithm that determines what control actions should be selected.
Journal Article

The Lynchpin—A Novel Geometry for Modular, Tangential, Omnidirectional Flight

2023-03-15
Abstract A novel geometry for a six degrees of freedom (6DOF) unmanned aerial vehicle (UAV) rotary wing aircraft is introduced and a flight mechanical analysis is conducted for an aircraft built in accordance to the thrust vectors of the proposed geometry. Furthermore, the necessary mathematical operations and control schemes are derived to fly an aircraft with the proposed geometry. A system identification of the used propulsion system with the necessary thrust reversal in the form of bidirectional motors and propellers was conducted at a whirl tower. The design of the first prototype aircraft is presented as well as the first flight test results. It could be demonstrated that an aircraft with the thrust vectors oriented according to the proposed geometry works sufficiently and offers unique maneuvering capabilities that cannot be reached with a conventional design.
Journal Article

The Influence of Carbon Fiber Composite Specimen Design Parameters on Artificial Lightning Strike Current Dissipation and Material Thermal Damage

2023-04-29
Abstract Previous artificial lightning strike direct effect research has examined a broad range of specimen design parameters. No works have studied how such specimen design parameters and electrical boundary conditions impact the dissipation of electric current flow through individual plies. This article assesses the influence of carbon fiber composite specimen design parameters (design parameters = specimen size, shape, and stacking sequence) and electrical boundary conditions on the dissipation of current and the spread of damage resulting from Joule heating. Thermal-electric finite element (FE) modelling is used and laboratory scale (<1 m long) and aircraft scale (>1 m long) models are generated in which laminated ply current dissipation is predicted, considering a fixed artificial lightning current waveform. The simulation results establish a positive correlation between the current exiting the specimen from a given ply and the amount of thermal damage in that ply.
Journal Article

Temperature and Consumed Energy Predictions for Air-Cooled Interior Permanent Magnet Motors Driving Aviation Fans—Part 1: Mathematical Analytical Solutions for Incompressible Air Cases

2022-04-13
Abstract The increase in worldwide awareness of environmental issues has necessitated the air transport industry to drastically reduce carbon dioxide emissions. To meet this goal, one solution is the electrification of aircraft propulsion systems. In particular, single-aisle aircraft with partial turboelectric propulsion with approximately 150 passenger seats in the 2030s are the focus. To develop a single-aisle aircraft with partial turboelectric propulsion, an air-cooled interior permanent magnet (IPM) motor with an output of 2 MW is desired. In this article, mathematical system equations that describe heat transfer inside the target air-cooled IPM motor are formulated, and their mathematical analytical solutions are obtained.
Journal Article

Technological Stability of the Liner in a Separable Metal Composite Pressure Vessel

2020-04-21
Abstract The article considers one of the possible mechanisms of loading the solidity of a cylindrical metal composite high-pressure vessel (MC HPV). This mechanism manifests itself as delamination of a thin-walled metal shell (liner) from a more rigid composite shell causing local buckling. A similar effect can be detected in the manufacturing process of MC HPV, when the composite shell is formed by winding with tension a carbon fiber-reinforced plastic tape on the liner. Pressure transfer from the composite shell to the liner is carried out by the method of temperature analogy, that is, by cooling the composite shell, thermally insulated from the liner. To solve the problem of externally confined liner local buckling an approach is proposed, which is based on three points: the introduction of local technological deviations inherent in actual structures, the determination of the general stress-strain state, and a real-time deforming.
Journal Article

TOC

2022-09-07
Abstract TOC
Journal Article

TOC

2021-06-07
Abstract TOC
Journal Article

Study on the Influence of Mass Flow Rate over a National Advisory Committee for Aeronautics 6321 Airfoil Using Improved Blowing and Suction System for Effective Boundary Layer Control

2021-08-06
Abstract The numerical analysis of the three-dimensional (3D) flow over a National Advisory Committee for Aeronautics (NACA) 6321 airfoil to evaluate the mass flow rate by using a novel method Improved Blowing and Suction System (IBSS) to control the boundary layer is presented in this study. Analysis is performed based on 3D Reynolds-Averaged Navier-Stokes (RANS) equation with a K-omega SST solver. The aerodynamic performance of the NACA 6321 is analyzed at a Mach number of 0.10 with three different mass flow rates, namely, 0.08 kg/s, 0.10 kg/s, and 0.12 kg/s. From the study, it is seen that when the mass flow rate decreased, the aerodynamics performance also reduced, and the aerodynamic performance improved with the increase in mass flow rate.
Journal Article

Study of Temperature Distribution and Parametric Optimization during FSW of AA6082 Using Statistical Approaches

2019-02-01
Abstract In this article, Al-Mg-Si-Mn alloy (AA6082) is butt joined by employing friction stir welding (FSW). The mechanical and metallurgical properties of joints are analyzed by conducting tensile and microhardness testing, respectively. To measure the temperature at different locations, eight thermocouples (L-shaped k-type) are placed at equal distance from the centerline. Least square method attempts to calculate the temperature at the centerline of joints. The process parameters are also optimized using Taguchi’s five-level experimental design. The optimum process parameters are determined, employing ultimate tensile strength (UTS) as a response parameter. A statistical test “analysis of variance” is used to check the adequacy of the model. It has been observed that rotational speed and feed rate are the predominant factors for UTS and microhardness.
Journal Article

Study of Sweepback Angles Criterion for Reusable Hypersonic Vehicle

2022-12-02
Abstract At hypersonic speed, severe aerodynamic heating is observed, and temperatures are too high to cool by radiation cooling; active cooling such as ablative cooling is helpful in this situation. The Thermal Protection System (TPS) consists of a layer of an ablative material, followed by an insulating material to lower the temperature at the inside wall of the lifting body. The surface area (considering the inside volume of the vehicle constant) of the TPS plays a vital role in heat transfer to the vehicle and heat transferred through the vehicle body. The minimum area sweepback angle (ΛArea-min) is the function of the principal radius (R) and the ratio of the principal radii of the forward bi-curvature stagnation surface (R/r). The ΛArea-min = 80° is obtained for R = 2 m and R/r = 2. The aerothermal analysis of the lifting body is of fundamental interest while designing the TPS.
Journal Article

Study of Statistical Narrow-Band Models for Infrared Signature of an Aeroengine Exhaust Plume in Mid-wave Infrared and Short-Wave Infrared Band

2022-04-20
Abstract An aeroengine exhaust plume is one of the important sources of infrared (IR) signature in the 3-5 μm and the 2-3 μm bands. Analysis, characterization, and modeling of the exhaust plume IR emission are needed for insight into its role in aircraft survivability against IR-guided missiles. The IR signature estimation of aeroengine exhaust needs estimation of radiative properties of absorbing-emitting exhaust gases, e.g., carbon dioxide (CO2) and water vapor (H2O). The radiative properties of the gases can be estimated by a mathematical model with a spectroscopic database of these gases. Low-Resolution Transmission (LOWTRAN), Moderate-Resolution Transmission (MODTRAN), High-Resolution Transmission (HITRAN), and High-Temperature Transmission (HITEMP) are some commonly used spectroscopic databases. This study compares Statistical Narrowband (SNB) models with the various other mathematical models used for the estimation of radiative properties of exhaust gases.
Journal Article

Single Turboshaft Engine Failure Analysis of an Inner Bus Tie Architecture for Turboelectric Distributed Propulsion System

2020-10-19
Abstract The study aims to design a roadmap of the turboelectric propulsion system’s power system architecture, which is based on the Inner Bus Tie Architecture proposed by the National Aeronautics and Space Administration (NASA). The single turboshaft engine shutdown failure mode is analyzed and simulated on MATLAB/Simulink. A General Electric (GE) T700 turboshaft engine is preferred in constructing a turboshaft engine mathematical model. The constructed mathematical model is integrated into NASA’s Inner Bus Tie Architecture. As a result, mechanical to electrical conversion efficiency and power balance of the system is derived. Element sizing is accomplished. Preliminary power requirements for generators, power converters, and electrical motors are calculated to generate a roadmap for future applications. Finally, it is observed that the simulations are found efficient and quite acceptable for such applications.
Journal Article

Simulated Drag Study of Fuel Tank Configurations for Liquid Hydrogen-Powered Commercial Aircraft

2020-12-09
Abstract The airline industry faces a crisis in the future as consumer demand is increasing, but the environmental effects and depleting resources of kerosene mean that growth is unsustainable. Hydrogen is touted as the leading candidate to replace kerosene, but it needs significant technological and economical endeavors. In such a scenario, cryogenic liquid hydrogen (LH2) is predicted to be the most feasible method of using hydrogen. The major challenge of LH2 as an aircraft fuel is that it requires approximately four times the storage volume of kerosene—due to its lower density. Thus the design of cryogenic storage tanks to handle larger quantities of fuel is becoming increasingly important. But the increase in drag associated with larger storage tanks causes an increase in fuel consumption. Hence, this paper aims to evaluate the aerodynamic performance of different storage configurations and aid in the selection of an economic and efficient storage system.
Journal Article

Semi-empirical Combustion Efficiency Prediction of an Experimental Air-Blasted Tubular Combustor

2020-10-19
Abstract The preliminary gas turbine combustor design process uses a huge amount of empirical correlations to achieve more optimized designs. Combustion efficiency, in relation to the basic dimensions of the combustor, is one of the most critical performance parameters. In this study, semi-empirical correlations for combustion efficiencies are examined and correlation coefficients have been revised using an experimental air-blasted tubular combustor that uses JP8 kerosene aviation fuel. Besides, droplet diameter and effective evaporation constant parameters have been investigated for different operating conditions. In the study, it is observed that increased air velocity significantly improves the atomization process and decreases droplet diameters, while increasing the mass flow rate has a positive effect on the atomization—the relative air velocity in the air-blast atomizer increases and the fuel droplets become finer.
X