Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Journal Article

Vertical Takeoff and Landing Aircraft, Vertical Takeoff and Landing Ground Effects

2020-08-20
Abstract The ground-effect problems of loss of thrust and fountain-effect instabilities are quantified. Experiments to control and augment ground-effect lift and stability are presented, including jet momentum reflection and fountain redirection using various types of internal and external underbody ventral strakes. By strategically designing the vertical takeoff and landing (VTOL) ventral surface, reflection of the impinging fountain momentum is possible so that instead of losing 10% thrust while in ground-effect, remarkably, thrust is augmented 10% or more to a considerable height above the ground, in addition to stabilizing random pitch and roll moments caused by fountain instability.
Journal Article

The Lynchpin—A Novel Geometry for Modular, Tangential, Omnidirectional Flight

2023-03-15
Abstract A novel geometry for a six degrees of freedom (6DOF) unmanned aerial vehicle (UAV) rotary wing aircraft is introduced and a flight mechanical analysis is conducted for an aircraft built in accordance to the thrust vectors of the proposed geometry. Furthermore, the necessary mathematical operations and control schemes are derived to fly an aircraft with the proposed geometry. A system identification of the used propulsion system with the necessary thrust reversal in the form of bidirectional motors and propellers was conducted at a whirl tower. The design of the first prototype aircraft is presented as well as the first flight test results. It could be demonstrated that an aircraft with the thrust vectors oriented according to the proposed geometry works sufficiently and offers unique maneuvering capabilities that cannot be reached with a conventional design.
Journal Article

TOC

2023-12-18
Abstract TOC
Journal Article

Study on the Influence of Mass Flow Rate over a National Advisory Committee for Aeronautics 6321 Airfoil Using Improved Blowing and Suction System for Effective Boundary Layer Control

2021-08-06
Abstract The numerical analysis of the three-dimensional (3D) flow over a National Advisory Committee for Aeronautics (NACA) 6321 airfoil to evaluate the mass flow rate by using a novel method Improved Blowing and Suction System (IBSS) to control the boundary layer is presented in this study. Analysis is performed based on 3D Reynolds-Averaged Navier-Stokes (RANS) equation with a K-omega SST solver. The aerodynamic performance of the NACA 6321 is analyzed at a Mach number of 0.10 with three different mass flow rates, namely, 0.08 kg/s, 0.10 kg/s, and 0.12 kg/s. From the study, it is seen that when the mass flow rate decreased, the aerodynamics performance also reduced, and the aerodynamic performance improved with the increase in mass flow rate.
Journal Article

Study on Vibration Characteristics of the Towbarless Aircraft Taxiing System

2022-02-21
Abstract The civil aircraft nosewheel is clamped, lifted, and retained through the pick-up and holding system of the towbarless towing vehicle (TLTV), and the aircraft may be moved from the parking position to an adjacent one, the taxiway, a maintenance hangar, a location near the active runway, or conversely only with the power of the TLTV. The TLTV interfacing with the nose-landing gear of civil transport aircraft for the long-distance towing operations at a high speed could be defined as a towbarless aircraft taxiing system (TLATS). The dynamic loads induced by the system vibration may cause damage or reduce the certified safe-life limit of the nose-landing gear or the TLTV when the towing speed increases up to 40 km/h during the towing operations due to the maximum ramp weight of a heavy aircraft.
Journal Article

Study of Sweepback Angles Criterion for Reusable Hypersonic Vehicle

2022-12-02
Abstract At hypersonic speed, severe aerodynamic heating is observed, and temperatures are too high to cool by radiation cooling; active cooling such as ablative cooling is helpful in this situation. The Thermal Protection System (TPS) consists of a layer of an ablative material, followed by an insulating material to lower the temperature at the inside wall of the lifting body. The surface area (considering the inside volume of the vehicle constant) of the TPS plays a vital role in heat transfer to the vehicle and heat transferred through the vehicle body. The minimum area sweepback angle (ΛArea-min) is the function of the principal radius (R) and the ratio of the principal radii of the forward bi-curvature stagnation surface (R/r). The ΛArea-min = 80° is obtained for R = 2 m and R/r = 2. The aerothermal analysis of the lifting body is of fundamental interest while designing the TPS.
Journal Article

Simulated Drag Study of Fuel Tank Configurations for Liquid Hydrogen-Powered Commercial Aircraft

2020-12-09
Abstract The airline industry faces a crisis in the future as consumer demand is increasing, but the environmental effects and depleting resources of kerosene mean that growth is unsustainable. Hydrogen is touted as the leading candidate to replace kerosene, but it needs significant technological and economical endeavors. In such a scenario, cryogenic liquid hydrogen (LH2) is predicted to be the most feasible method of using hydrogen. The major challenge of LH2 as an aircraft fuel is that it requires approximately four times the storage volume of kerosene—due to its lower density. Thus the design of cryogenic storage tanks to handle larger quantities of fuel is becoming increasingly important. But the increase in drag associated with larger storage tanks causes an increase in fuel consumption. Hence, this paper aims to evaluate the aerodynamic performance of different storage configurations and aid in the selection of an economic and efficient storage system.
Journal Article

Research on a Thrust Vector Adjusting Mechanism

2022-10-05
Abstract The electric propulsion system plays an important role during the operation of a satellite, i.e., maintaining the position of the north-south poles, adjusting the attitude, and transferring the orbit, where vector adjustment device is a key part of the system. We developed a new large-angle device to transfer thruster orbital, which has three driving motors and the failure of a single motor cannot affect the operation. The posture angle and linear pair displacement of this mechanism are simulated using forward and inverse kinematics solutions. In the following, the actual adjustment angle was measured with a three-coordinates measuring instrument and a gradiometer to compare with the simulated values. This design has been successfully applied in China’s asteroid exploration mission.
Journal Article

Predictive Modeling of Aircraft Dynamics Using Neural Networks

2022-05-25
Abstract Fighter pilots must study models of aircraft dynamics before learning complex maneuvers and tactics. Similarly, autonomous fighter aircraft applications may benefit from a model-based learning approach. Instead of using a preexisting physics model of a given aircraft, a machine learning system can learn a predictive model of the aircraft physics from training data. Furthermore, it can model interactions between multiple friendly aircraft, enemy aircraft, and the environment. Such a system can also learn to represent state variables that are not directly observable, as well as dynamics that are not hard coded. Existing model-based methods use a deep neural network that takes observable state information and agent actions as input and provides predictions of future observations as output. The proposed method builds upon this approach by adding a residual feedforward skip connection from some of the inputs to all of the outputs of the deep neural network.
Journal Article

Prediction and Estimation of Propeller Drag

2022-11-30
Abstract Turboprop aircraft have the capability of reversing thrust to provide extra stopping power during landing. Reverse thrust helps save the wear and tear on the brakes and reduces the landing distance under various conditions. The article explains a methodology to predict the disking drag (reverse thrust) from the Computational Fluid Dynamics (CFD) technique using Blade Element Momentum (BEM) theory and estimation of the same from high-speed taxiing trial (HSTT) and ground roll data for a turboprop aircraft using system identification techniques. One-dimensional kinematic equation was used for modeling the aircraft dynamics, and the error between measured and estimated responses was optimized using the Output Error Optimization Method (OEOM). The estimated propeller drag was matched with CFD predictions to arrive at a relation between the propeller blade pitch angle and throttle position.
Journal Article

Performance Study of Novel Compressor Blades in a Two-Dimensional Cascade—Transonic Regime

2021-09-07
Abstract Passengers would always like to reach their destinations with minimum commute time. Generating a higher thrust is a necessity. This implies that the turbomachinery associated with the power plant has to rotate faster and with higher efficiencies. However, high rotational speeds, mainly in the transonic regime, often lead to boundary layer separation, shocks, compressor stall, and surge. The current investigation is an attempt to reduce the abovementioned phenomena. It involves the performance study of a smoothened controlled diffusion airfoil (CDA) blade that has been optimized by “Multi-Objective Genetic Algorithm” (MOGA) by altering maximum camber location and stagger angle. Inlet pressure is varied from 15 kPa to 30 kPa and the angle of attack ranging from 40.4° to 56.4°. C48-S16-BS1 is validated and considered as the baseline profile, and all other blades are collated to this.
Journal Article

Parametric Studies on Airfoil-Boundary Layer Ingestion Propulsion System

2020-03-11
Abstract From the fact that a propulsor consumes less power for a given thrust if the inlet air is slower, simulations are conducted for a propulsor imposed behind an airfoil as ideal boundary layer ingestion (BLI) propulsor to stand on the benefits of this configuration from the point of view of power and efficiency and to get a closer look on the mutual interaction between them. This interaction is quantified by the impact on three main sets of parameters, namely, power consumption, boundary layer properties, and airfoil performance. The position and size of the propulsor have great influence on the flow around the airfoil. Parametric studies are carried out to understand their influence. BLI propulsor directly affects the power saving and all of the pressure-dependent parameters, including lift and drag. For the present case, power saving reached 14.4% compared to the propeller working in freestream.
Journal Article

Optimizing Intralogistics in an Engineer-to-Order Enterprise with Job Shop Production: A Case Study of the Control Cabinet Manufacturing

2024-01-16
Abstract This study underscores the benefits of refining the intralogistics process for small- to medium-sized manufacturing businesses (SMEs) in the engineer-to-order (ETO) sector, which relies heavily on manual tasks. Based on industrial visits and primary data from six SMEs, a new intralogistics concept and process was formulated. This approach enhances the value-added time of manufacturing workers while also facilitating complete digital integration as well as improving transparency and traceability. A practical application of this method in a company lead to cutting its lead time by roughly 11.3%. Additionally, improved oversight pinpointed excess inventory, resulting in advantages such as reduced capital needs and storage requirements. Anticipated future enhancements include better efficiency from more experienced warehouse staff and streamlined picking methods. Further, digital advancements hold promise for cost reductions in administrative and supportive roles.
Journal Article

Novel Approach to the Mechanism of Aerodynamic Forces

2023-02-07
Abstract This study consists of a novel approach based on Classical Mechanics to explain the aerodynamic forces on a body in motion relating to a fluid. This new approach does not require the presence of viscosity to generate the forces and is compatible with the Kutta condition. The physical reasoning of the approach is outlined with the introduction of the aerodynamic suction effect of the body. Next, the mathematical expressions and a code that models the physical phenomena are developed. These are applied for the case of a sphere immersed in a moving fluid and then an airfoil. An initial validation of this new approach is performed by a comparison of the theoretical results and the available results of the National Advisory Committee for Aeronautics (NACA) airfoils. This new mathematical approach is especially valid for high Reynolds numbers where viscosity can be neglected.
Journal Article

Nonlinear Observer for Estimating Gravity Vector and Flight Path Angles of a High-Performance Aircraft

2023-08-14
Abstract This paper proposes a nonlinear observer for the estimation of gravity vector and angles with respect to velocity vector (flight path angle, bank angle) of a high-performance aircraft. The technique is computationally simpler than the extended Kalman filter (EKF) and hence is suitable for onboard implementations when the digital flight control computer (DFCC) has computational burdens. Flight test data of a highly maneuvering flight such as wind-up turns and full rolls have been used to validate the technique.
Journal Article

Limitations of Two-Stage Turbocharging at High Flight Altitudes

2018-09-17
Abstract High-altitude long-endurance (HALE) unmanned aerial vehicles (UAVs) are used for high flight altitudes, which enable low drag and fast flight with minimal fuel consumption. Two-stage turbocharging is necessary to sustain sea-level power at high flight altitudes. In this study, the limitations of two-stage turbocharging at high flight altitudes typical for HALE UAVs are analyzed for the first time. The obtained results show that the minimum available engine power increases as the altitude rises. This will limit the ability of the aircraft to descend rapidly. Furthermore, at high altitudes, if a lower operating point is required for a fast descent, further recovery to full power for climbing or cruising could be unavailable. In the latter cases, a lower altitude must be reached before full power would be available again. A basic algorithm for the assessment and analysis of the limitations of UAV engines with two-stage turbochargers operating at high altitudes is suggested.
Journal Article

Landing Response Analysis on High-Performance Aircraft* Using Estimated Touchdown States

2019-04-08
Abstract A novel use of state estimation methods as initial input for a landing response analysis is proposed in this work. Six degrees of freedom (DOF) non-linear landing response model is conceived by considering longitudinal dynamics of aircraft as a rigid body with heave-and-pitch motions coupled onto a bicycle landing gear † arrangement. The DOF for each landing gear consist of vertical and longitudinal motions of un-sprung mass, considering strut bending flexibility. The measurement data for state estimation is obtained for three landing cases using non-linear flight mechanics model interfaced with pilot-in-loop simulation. State estimation methods such as Upper Diagonal Adaptive Extended Kalman Filter (UD-AEKF) with fuzzy-based adaptive tuning and Un-scented Kalman Filter (UKF) were adapted for landing maneuver problem. On the basis of estimation error metrics, aircraft state from UKF is considered during onset of touchdown.
Journal Article

Investigation on the Aerodynamic Performance of Different Aerofoils Using Vortex Generators

2023-01-25
Abstract This article aims to analyze the effect of vortex generators (VGs) placed on symmetrical and cambered aerofoil. Simulation and experimental works were carried out using NACA 6321 and NACA 0021 aerofoils at different angles of attack (AOA) and aerodynamic performance obtained at a velocity of 15 m/s and 140625 Reynolds number (Re). In this study, aerofoils with the same thickness and a novel design of minute VGs were introduced and placed at a location of 0.5C (50% of chord). The VGs improved the stall AOA by 4° and 2° in simulation and experimental methods, respectively, with no drag increment compared to the baseline aerofoil. These VGs controlled the boundary layer over an aerofoil with enhancement in aerodynamic efficiency of subsonic aircrafts.
Journal Article

Improve Heat Resistance of Composite Engine Cowlings Using Ceramic Coating Materials, Experimental Design and Testing

2018-06-04
Abstract A large amount of heat generated in the engineering compartment in a hovering helicopter may lead to premature degradation of inner skin of its engine cowling and cause serious failure on the engine cowling. This study proposes a solution of improving heat resistance of the helicopter engine cowlings by replacing the currently used intumescent coating with a ceramic coating material, Cerakote C-7700Q. Oven and flame tests were designed and conducted to evaluate the heat resistance of Cerakote C-7700Q. The test results show that the currently used painting scheme of the engine cowlings failed the 220°C oven test while after replacing the epoxy seal coat with the Cerakote, the new painting system passed the 220°C test in regards to painting bubbling. Based on that, a new painting scheme with C-7700Q implemented was recommended.
X