Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Insert and Fly” Using PCMCIA PC Cards in the Avionics Market

1994-11-01
942553
When looking into using PCMCIA PC Cards in the avionics market, three areas must be researched. The first is what are the applications and benefits of using the PC Cards while in flight, followed by the applications and benefits on the ground, and thirdly on how to make a PC Card that would stand up to the rugged avionics environment. PCMCIA PC Cards can be used in all aspects of flight. Three possible applications on the ground are; paperless documentation, modifications, flightline changes. Once airborne, PC Cards can be removed and a different functionality card can be inserted. One PC card socket can be used for many different functions during one flight. Some of the possible applications for PC Cards inflight are; flight plan changes, backup Line Replaceable Units (LRUs), and solid state data collection.
Technical Paper

‘Bigelow Aerospace® Life Support Laboratory - Planning and Status’

2004-07-19
2004-01-2474
This Life Support Laboratory consists of a simulator of the spacecraft called Nautilus, which houses Air Revitalization Subsystem, Atmospheric Control and Supply, and Fire Detection and Suppression in the Equipment Area. There are supporting facilities including a Human Metabolic Simulator, simulated Low and Moderate Temperature Coolant Loop, chemical analysis bench, purified water supply, vacuum and gas supplies. These facilities are scheduled to be completed and start to operate for demonstration purposes by March 2005. There are an ARES Ground Model (AGM) and a Trace Contaminant Control Assembly in the ARS. The latter will be integrated with the AGM and a Condensing Heat Exchanger. The unit of AGM is being engineered, built, and will be delivered in early 2005 by EADS Space Division. These assemblies will be operated for sensitivity analysis, integration and optimization studies. The main goal is the achievement for optimal recovery of oxygen.
Technical Paper

eROSITA Camera Low Temperature Thermal Control

2008-01-29
2008-01-1957
eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is a powerful X-ray telescope under development by the Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany. eROSITA is the core instrument on the Russian SRG1 mission which is planned for launch in 2011. It comprises seven nested Wolter-I grazing incidence telescopes, each equipped with its own CCD camera. The mirror modules have to be maintained at 20°C while the cameras are operated at -80°C. Both, mirrors and CCDs have to be kept within tight limits. The CCD cooling system consists of passive thermal control components only: two radiators, variable conductance heat pipes (VCHP) and two special thermal storage units. The orbit scenario imposes severe challenges on the thermal control system and also on the attitude control system.
Technical Paper

Zero-Venting, Regenerable, Lightweight Heat Rejection for EVA Suits

2005-07-11
2005-01-2974
Future space exploration missions will require a lightweight spacesuit that expends no consumables. This paper describes the design and performance of a prototype heat rejection system that weighs less than current systems and vents zero water. The system uses regenerable LiCl/water absorption cooling. Absorption cooling boosts the heat absorbed from the crew member to a high temperature for rejection to space from a compact, non-venting radiator. The system is regenerated by heating to 100°C for two hours. The system provides refrigeration at 17°C and rejects heat at temperatures greater than 50°C. The overall cooling capacity is over 100 W-hr/kg.
Technical Paper

Zero G Liquid Propellant Orientation by Passive Control

1964-01-01
640239
This paper discusses the advantages and problems associated with the use of “passive” liquid containment systems that utilize liquid intermolecular forces for propellant orientation in reduced or zero gravity environments. Liquid orientation is required to provide reliable engine restart and tank venting operations of space vehicle propulsion systems. Various liquid containment system concepts, and associated design criteria, are presented and general problem areas of interface stability, liquid slosh, and effects of thermal energy are described. Descriptions of present and planned test facilities designed to provide reduced gravity environments and extended time durations are included. It is concluded that additional design criteria in the problem areas discussed must be obtained before “passive” liquid containment systems can replace systems now used in reduced or zero gravity environments.
Technical Paper

X-Wing: A Low Disc-Loading V/STOL for the Navy

1985-10-01
851772
The X-Wing concept employs a single lifting system for all modes of flight. The lifting system is comprised of four very rigid, circulation control wings with blowing for lift modulation and control. For hover and low speed flight, the wings rotate such as the rotor of a helicopter. For high speed flight, the wings are stopped in an “X” configuration across the fuselage - from which the name of the concept is derived - with two forward-swept wings and two aft-swept wings. Such a vehicle is also envisioned to have an integrated gas turbine propulsive system for all flight modes. At low speeds, the gas generators) would drive a shaft to turn the wings and the circulation control compressor as well as a set of propulsive fans. For high-speed flight, the shaft would drive only the compressor and accessories as the fans propel the vehicle. The X-Wing concept has been underdevelopment for over 15 years.
Technical Paper

X-38 Nose Skirt Panels - Results of Qualification Testing

2001-07-09
2001-01-2343
The X-38 vehicle will be used to demonstrate the future technology on durable TPS for the CRV. Astrium has produced two large CMC Nose Skirt side panels for the current X-38 configuration. The design of the 3 dimensional curved and large side panels comprises a light-weight, stringer stiffened concept which compensates the thermal expansion by a system of flexible metallic stand-offs. An optimum in flexibility and stiffness to fulfil all requirements had to be found: strong and stiff enough to carry the thermo-mechanical loads, but flexible enough to realise a fastening concept which does not fail due to thermal expansion. The fastening concept has been tested on development test level. Some thermal and mechanical tests on sub-structure level confirmed the design and analysis work of the complete TPS concept.
Technical Paper

Working Out of Heat Pipes for Low Temperature Radiative Cooling Systems for Space Optic Sensors

1996-07-01
961603
The substantiation of heat pipe usage in passive radiative cooling systems on temperature level (190…240) K for space optical sensors is presented. Heat pipes can be sound practice like heat conducting lines between sensor and radiator particularly at distances more 0.2 m and irreplaceable at distances (0.5…2) m. Embedding heat pipe with radiator allows to create the uniform temperature basis in case of several sensors connection to single radiator and to improve radiator efficiency. It is analyzed approach to design of thermocontrol and cooling radiative systems with heat pipes to reduce sensitiveness to external light disturbances and to enlarge area of radiative system application. The results of design, thermovacuum test and flight operation of thermocontrol radiative system samples are under discussion as well.
Technical Paper

Working Fluid De-freezing in Radiator on Base of LHP

2007-07-09
2007-01-3199
Selection of working fluid is one of the main criterions for designing of heat pipes thermal control systems (TCS) for space application. In this paper we will describe how we solved the task of development of the TCS with working fluid of high thermal physical properties. In 2004-2006 we developed the Engineering model of Deployable Radiator based on Loop Heat Pipe by CAST purchase order. It was developed for qualification tests. Ammonia application as LHP working fluid is stipulated by its high thermal physical properties. However Ammonia freezing temperature is of minus 77ºC. Such fact impedes Ammonia application when operation temperatures of LHP Radiator are lower than this value, for example, It takes several tens of hours to orbit a spacecraft and prepare it for work (at that moment the spacecraft is out of power supply) and the working fluid can be frozen in a condenser-radiator when the spacecraft being in the shadow over a long period of time.
Technical Paper

Work Measurement Videotaping Technique as a Means for Estimating Food Preparation Labor Time of a Bioregenerative Diet

1999-07-12
1999-01-2075
A bioregenerative diet is characterized by a high proportion of foods produced on site. The production and processing of foods into either ingredients or recipes entails certain labor requirements. Ideally these labor requirements should be estimated with a high degree of accuracy. Crew time is at premium and any amount of time spent on food preparation and processing is time not spent in conducting research and any other activities devised to improve the quality of life of the astronauts. Moreover, a wide variety of tasks are involved in the food preparation of a bioregenerative diet and the labor times of these tasks do not scale or increase in uniform fashion. Predicting food preparation labor requirements for varying crew sizes will require task specific models and data. Videotape analysis is a work measurement tool used in the manufacturing industry.
Technical Paper

Wide Temperature Magnetization Characteristics of Transverse Magnetically Annealed Amorphous Tapes for High Frequency Aerospace Magnetics

1999-08-02
1999-01-2541
100 kHz magnetization properties of sample transverse magnetically annealed, cobalt-based amorphous and iron-based nanocrystalline tape wound magnetic cores are presented over the temperature range of −150 C to 150 C, at selected values of Bpeak. Frequency resolved characteristics are given over the range of 50 kHz to 1 MHz, but at Bpeak =0.1 T and 50 C only. Basic exciting winding current and induced voltage data were taken on bare toroidal cores, in a standard type measurement setup. A linear permeability model, which represents the core by a parallel L-R circuit, is used to interpret and present the magnetization characteristics and several figures of merit applicable to inductor materials are reviewed.. The 100 kHz permeability thus derived decreases with increasing temperature for the Fe-based, nanocrystalline material, but increases roughly linearly with temperature for the two Co-based materials, as long as Bpeak is sufficiently low to avoid saturation effects.
Technical Paper

Why Current Types of Accelerated Stress Testing Cannot Help to Accurately Predict Reliability and Durability?

2011-04-12
2011-01-0800
This paper demonstrates the results of the analysis of the current practical situation in product reliability and durability as well as accelerated stress testing development. High stress testing is now the basic source for obtaining initial information to provide a prediction of a product's reliability and durability. This paper shows that this testing cannot offer information for the accurate prediction of reliability and durability, because the product degradation process during the testing differs from the product degradation process during the actual field situation. As a result, the time to failures also differs.
Technical Paper

What is Flight Inspection?

1997-05-01
971482
Flight Inspection is the Quality Assurance program which the Federal Aviation Administration uses to verify the performance of air navigation facilities and associated Instrument Flight Procedures. As an integral part of the National Airspace System, it is imperative that these facilities and procedures conform to the prescribed standards throughout their published service volume. This paper attempts to explain to the reader just how the FAA uses their Flight Inspection aircraft to accomplish that mission.
Technical Paper

What Forces Will Shape Tomorrow's Short-Haul Aircraft

1984-10-01
841449
Commuter/regional airlines profits depend largely upon equipment which helps increase revenue a/o minimize operating costs, with former seen more critical. Airframe/component reliability is priority requirement. Maintenance schedules, a/c performance and pax appeal must mesh with demands of high weekday/daytime cycles between congested hubs and rural airports. Manufacturers help regionals most with a/c optimizing a blend of: payload, pressurized pax comfort, ops flexibility and fuel efficiency, progressive/simplified maintenance, airframe/component durability and reliability, low parts count, QC cabin for cargo/charter off-peak opportunities.
Technical Paper

Weibull Renewal Analysis

1964-01-01
640624
Renewal theory concerns itself with the replacement of randomly failing parts. In the simplest case we have a one component system which is kept running continuously by replacing a failed component at the instant of failure with an identical “new” component. The random variable N(t) = the number of failures (or replacements) to time t is then of interest in many types of reliability analysis. In this paper the distribution of N(t) is considered when the underlying failure law is a Weibull distribution. Tables of the mean and standard deviation of N(t) for various values of the Weibull slope parameter are presented. Applications to warranty and spare parts analyses are also noted.
Technical Paper

Weathering of Thermal Control Coatings

2007-07-09
2007-01-3020
Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an appliqué. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliqués upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel.
Journal Article

Wear Dependent Tool Reliability Analysis during Cutting Titanium Metal Matrix Composites (Ti-MMCs)

2013-09-17
2013-01-2198
Metal matrix composites (MMCs) exhibit superior characteristics such as low weight, high stiffness, and high mechanical and physical properties. Inheriting such an outstanding combination of specifications, they are nowadays considered as the promising materials in the aerospace and biomedical industries. However, the presence of high abrasive reinforcing particles in MMCs leads to severe manufacturing issues. Due to the tool-particle interactions which occur during the machining of MMCs, high tool wear and poor surface finish are induced and those elements are considered as the main drawbacks of cutting MMCs. In this study, dry turning experiments were conducted for two different inserts and coated carbide on a bar of titanium metal matrix composite (Ti-MMC). Semi-finishing machining is operated with cutting parameters based on the tool supplier's recommendations which were not fully optimized. The maximum flank wear length (VBBmax) was selected as the tool wear criteria.
Technical Paper

Water Vapor Recovery from Plant Growth Chambers

1991-07-01
911502
NASA is investigating the use of plant growth chambers (PGCs) for space missions and for bases on the moon and Mars. Key to successful development of PGCs is a system to recover and reuse the water vapor that is transpired from the leaves of the plants. In this paper a design is presented for a simple, reliable, membrane-based system that allows the recovery, purification, and reuse of the transpired water vapor through control of temperature and humidity levels in PGCs. The system is based on two membrane technologies: 1) dehumidification membrane modules to remove water vapor from the air, and 2) membrane contactors to return water vapor to the PGC (and, in doing so, to control the humidity and temperature within the PGC). The membrane-based system promises to provide an ideal, stable growth environment for a variety of plants, through a design that minimizes energy usage, volume, and mass, while maximizing simplicity and reliability.
Technical Paper

Water Quality Standards for Space Vehicles and Habitats

2008-06-29
2008-01-2196
Water quality standards have been completed for space vehicles and habitats for ingestion periods from 1 day to 1000 days. These standards are called spacecraft water exposure guidelines (SWEGs). The National Research Council Committee on Toxicology has worked with the Toxicology Group at the National Aeronautics and Space Administration (NASA) to set and document these standards. Prior to SWEG development, the practice of NASA was to apply the United States Environmental Protection Agency (USEPA) maximum contaminant levels (MCLs) in the interpretation of any potential health effects from water pollutants. This practice had the potential to result in erroneous conclusions because MCLs are intended for lifetime exposures and are set to protect a much more diverse population than is present in the astronaut corps. However, for certain pollutants it was recognized that the stresses of spaceflight may make astronauts more susceptible to adverse effects.
X