Refine Your Search

Search Results

Viewing 1 to 12 of 12
Standard

Long-Term Storage of Missile Hydraulic Systems

2008-11-06
HISTORICAL
AIR974A
Much of the available long-term storage test data has been reviewed and topically separated to enable the independent discussion of storage effects on fluids, seals, hydraulic components, and hydraulic systems. Comments are made in Section 4 concerning the applicability of the test results and regarding design practices for storability. Conclusions are drawn in Section 5 regarding inactive storage of hydraulic systems for at least a 7 year period.
Standard

Long-Term Storage of Missile Hydraulic Systems

2013-10-04
CURRENT
AIR974B
Much of the available long-term storage test data has been reviewed and topically separated to enable the independent discussion of storage effects on fluids, seals, hydraulic components, and hydraulic systems. Comments are made in Section 4 concerning the applicability of the test results and regarding design practices for storability. Conclusions are drawn in Section 5 regarding inactive storage of hydraulic systems for at least a 7 year period.
Standard

Aerospace Military Aircraft Hydraulic System Characteristics

2023-04-26
CURRENT
AIR1899A
This SAE Aerospace Information Report (AIR) has been compiled to provide information on hydraulic systems fitted to the following categories of military vehicles. Attack Airplanes Fighter Airplanes Bombers Anti-Sub, Fixed Wing Airplanes Transport Airplanes Helicopters Boats
Standard

Achieving Cleanliness Standards for Aircraft Hydraulic Systems During Manufacture

2022-11-14
CURRENT
ARP5891A
This SAE Aerospace Recommended Practice (ARP) provides processes for achieving the required cleanliness standards during the fabrication, assembly, and functional test of aircraft hydraulic systems. It covers exclusion and removal of solid and liquid contaminants from tubing during manufacture and final assembly, flushing of the installed system, and final checks to ensure cleanliness requirements are met.
Standard

Achieving Cleanliness Standards for Aircraft Hydraulic Systems During Manufacture

2014-05-12
HISTORICAL
ARP5891
This SAE Aerospace Recommended Practice (ARP) establishes the processes to achieve and maintain the required cleanliness levels in flight vehicle hydraulic systems during fabrication, assembly and pre-flight functional tests. This recommended practice covers exclusion and removal primarily of solid contaminants that occur or are created during these successive steps. The flushing procedure for installed tubing is detailed. This ARP does not address contamination levels of hydraulic fluids as purchased, operation and maintenance of ground carts, details of component cleanliness or of contamination measurement. This ARP applies to military aircraft and helicopters designed to AS5440, commercial aircraft hydraulic systems designed to ARP4752 and commercial helicopter hydraulic systems designed to ARP4925.
Standard

8000 psi Hydraulic Systems: Experience and Test Results

2004-03-18
HISTORICAL
AIR4002
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
Standard

8000 psi Hydraulic Systems: Experience and Test Results

2012-11-15
CURRENT
AIR4002A
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
X