Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Structural and Radiation Shielding Properties of Non-parasitic, Multi-functional Microporous Carbon for Aerospace Applications

2007-07-09
2007-01-3111
AFR, Inc. is developing a multifunctional Carbon material that, in addition to excellent radiation shielding characteristics, is appropriate for certain energy storage applications. As an excellent Hydrogen gas sorbent, it increases the usable storage capacity of a gas cylinder by ∼25% at 3500 PSI and by ∼150% at 500 PSI. Our ongoing NASA Langley funded study shows that when a sorbent-filled tank is charged with hydrogen, it provides shielding superior to polyethylene against most types of ionizing particles. Even as hydrogen is consumed, the carbon and tank ensure that significant radiation shielding capability is maintained. In addition to storing hydrogen, the carbon material also displays considerable strength. In this paper, we explore some of its mechanical properties that show this material is very versatile and highly multifunctional.
Technical Paper

Radiation Shielding and Mechanical Strength Evaluations of Non-parasitic, Multi-functional Microporous Carbon for Aerospace Applications

2006-07-17
2006-01-2104
AFR, Inc. is developing a multifunctional Carbon material that, in addition to excellent radiation shielding characteristics, is appropriate for certain energy storage applications. As an excellent Hydrogen gas sorbent, it increases the usable storage capacity of a gas cylinder by ∼25% at 3500 PSI and by ∼150% at 500 PSI. Our ongoing NASA Langley funded study shows that when a sorbent-filled tank is charged with hydrogen, it provides shielding superior to polyethylene against most types of ionizing particles. Even as hydrogen is consumed, the carbon and tank ensure that significant radiation shielding capability is maintained. Vastly improved radiation shielding is a clear requirement for a potential manned mission to Mars or a long-duration base on the surface of the Moon. However, current shielding technologies are predicated upon systems dedicated solely to the task of shielding.
Technical Paper

LET Spectra of Iron Particles on A-150: Model Predictions for the CRaTER Detector

2007-07-09
2007-01-3113
The Lunar Orbiter Mission (LRO) is scheduled to launch at the end of 2008. It will carry different instruments to explore a variety of aspects on the Moon's surface. One of the goals of the LRO is to characterize the lunar radiation environment and its biological impacts on humans. For this purpose a collaboration involving research personnel from Boston University, Massachusetts Institute of Technology, The University of Tennessee, The Aerospace Corporation, Air Force Research Laboratory, and the NOAA Space Environment Center successfully proposed to develop a sensor system called the Cosmic Ray Telescope for the Effects of Radiation (CRaTER). CRaTER will be used to examine the Linear Energy Transfer (LET) spectra of solar particle events (SPE) and galactic cosmic radiation (GCR) in Tissue Equivalent Plastic (A-150) material.
Technical Paper

LET Spectra of High Energy Proton Beam on A-150: Model Predictions for the CRaTER Detector

2006-07-17
2006-01-2145
Doses to human crews in interplanetary space from energetic Solar Particle Events (SPE) are of a special concern for future lunar missions. The Lunar Reconnaissance Orbiter (LRO) mission, scheduled to launch by the end of 2008 into Lunar orbit, will conduct several exploratory objectives, one of which is characterizing the lunar radiation environment and its biological impacts on humans. Research is currently being conducted for the purpose of developing a sensor system to be flown on the LRO called the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) to measure the Linear Energy Transfer (LET) Spectra of SPE, providing a link between the Moon’s radiation environment and its biological impact on humans.
X