Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Thermal Control of X-ray Astronomy Satellite ASTRO-E2 “SUZAKU”

2007-07-09
2007-01-3081
Japanese X-ray astronomy satellite ASTRO-E2 named “SUZAKU“ was successfully launched on July 10, 2005. SUZAKU is the fifth Japanese X-ray astronomy satellite to observe X-ray coming from hot and active regions in the universe in collaboration with NASA GSFC, MIT and University of Wisconsin. “SUZAKU” has achieved the high sensitivity wide energy band X-ray spectroscopy than ever before. It is equipped with X -ray telescopes (XRT) and three kinds of focal plane instruments, X-Ray Imaging Spectrometer (XIS), X-Ray Spectrometer (XRS) and Hard X-Ray Detector (HXD). A radiation-cooling system, connected to XIS and HXD with heat pipes, is provided to cool them below −30 C and −20 C respectively. Furthermore, a side panel has a large cut out to expose XRS cryogenic Dewar for direct cooling. Flight temperatures indicate that the three sensors are kept below their cooling-requirement temperature.
Technical Paper

Smart Radiation Device: Design of an Intelligent Material with Variable Emittance

2001-07-09
2001-01-2342
Variable emittance radiator, called SRD, is a thin and light ceramic tile whose infrared emissivity is varied proportionally by its own temperature. Bonded only to the external surface of spacecrafts, it controls the heat radiated to deep space without electrical or mechanical parts such as the thermal louver. By applying this new device for thermal control of spacecrafts, considerable weight and cost reductions can be achieved easily. In this paper, the new design and the new manufacturing process of the SRD and its optical properties, such as the total hemispherical emittance and the solar absorptance, are described. By introducing this new design and manufacturing process, the weight of the SRD is easily decreased, keeping its strength and the optical properties.
Technical Paper

Development of a Flexible Thermal Control Device with High-Thermal-Conductivity Graphite Sheets

2003-07-07
2003-01-2471
This paper describes a new passive thermal control device-a Reversible Thermal Panel (RTP)-which changes its function reversibly from a radiator to a solar absorber by deploying/stowing the radiator/absorber reversible fin. The RTP consists of Highly Oriented Graphite Sheets (HOGSs), which have characteristics of high thermal conductivity, flexibility and light weight, as thermal transport units, which can transport the heat from equipment to reversible fin, and of a Shape - Memory Alloy (SMA) as a passively rotary actuator to deploy/stow the reversible fin. The RTP prototype model was designed and fabricated using HOGSs, a honeycomb base palate, and a prototype reversible rotary actuator. The heat rejection performance of the RTP as a radiator and the heat absorption performance as an absorber were evaluated by thermal vacuum tests and thermal analyses. The autonomous thermal controllability achieved using the prototype rotary actuator was also evaluated.
Technical Paper

Design and Optical Performance Evaluation of Smart Radiation Device with Multi-layer Coating

2008-06-29
2008-01-2152
The Smart Radiation Device (SRD) is a new thermal control material that decreases the temperature variation by changing the emissivity without using electrical instruments or mechanical parts. The emissivity of the SRD changes physically depending on its temperatures. Bonded only to the external surface of the spacecrafts, the SRD controls the temperature. The drawback of the SRD is the high solar absorptance. The multi-layer film for SRD was designed in order to decrease the solar absorptance from 0.81 to less than 0.2 by putting multi-layer film on it and the optical performance of the Smart Radiation Device with Multi-layer film (SRDM) was evaluated.
Technical Paper

Design and Fabrication of a Passive Deployable/Stowable Radiator

2006-07-17
2006-01-2038
A lightweight 100 W-class deployable radiator with environment-adaptive functions has been investigated. This radiator - Reversible Thermal Panel (RTP) - is composed of flexible high thermal conductive materials and a passive reversible actuator, and it changes its function from a radiator to a solar absorber by deploying/stowing the reversible fin upon changes in the heat dissipation and thermal environment. The RTP is considered one of the candidates of thermal control methodology for the Japanese Venus mission “Planet-C”, which will be launched in 2010 to save its survival heater power. In this paper, design and fabrication of the RTP proto-model (PM) and the test results of deployment/stowing characteristics in an atmospheric condition are reported. Thermal performance estimation with thermal analytical model of the RTP PM is also presented.
X