Refine Your Search

Topic

Author

Search Results

Standard

Worldwide On-Board Diagnostic Requirements Overview

2024-02-28
CURRENT
J3248_202402
This document focuses on the latest in-force regulations. However, in addition to latest information, the report may include historical information. As regulations are superseded, the previous entry will remain to help understand the change in requirements over time. The initial focus of the document includes light-, medium-, and heavy-duty on-road vehicles with all propulsion systems. The document will include information from the United States and Canada, with later publications expanding to other regions. Forecasts for future regulations will not be included in the spreadsheet but be kept in a separate document. The document may be expanded to other types of applications/vehicles as information becomes available.
Standard

Vehicle OBD II Compliance Test Cases for J1979-2

2019-08-23
WIP
J1699-5
The main purpose is to verify that vehicles are capable of communicating a minimum subset of information, in accordance with the diagnostic test services specified in SAE J1979-2: E/E Diagnostic Test Modes
Technical Paper

Validation of the SCARLET Advanced Array on DS1

1999-08-02
1999-01-2630
In October, 1998, the first of the NASA New Millennium Spacecraft, DS1, was successfully launched into space. The objectives for this spacecraft are to test advanced technologies that can reduce the cost or risk of future missions. One of these technologies is the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET). Although part of the advanced technology validation study, the array is also the spacecraft power source. Funded by BMDO, the SCARLET™ concentrator solar array is the first spaceflight application of a refractive lens concentrator. As part of the DS1 validation process, the amount of array diagnostics is very extensive. The data obtained includes temperature measurements at numerous locations on the 2-wing solar array. For each individual panel, a 5-cell module in one of the circuit strings is wired so that a complete I-V curve can be obtained. This data is used to verify sun pointing accuracy and array output performance.
Standard

Utilizing Integrated Vehicle Health Management Systems for Airworthiness Credit: Statement of Concerns

2023-10-30
WIP
AIR8474
The statement of concerns within this document may be specific to commercial and/or military applications. They also discuss unique concerns between different regulators. They apply to the entire end-to-end health management function throughout the aircraft’s design and operational life, covering on-board and off-board elements. Regulatory approval has been provided to some engine and aircraft Original Equipment Manufacturers (OEMs), allowing the use of health management functionality to comply with Airworthiness Directives (AD), extend inspection intervals, comply with MSG guidance, or to more effectively utilize component lives to optimize “time on wing.” However, different variations and applications of IVHM systems could bring up new concerns which are not currently addressed in standards, especially when attempting to obtain approval to use higher criticality IVHM systems for airworthiness credit.
Standard

Utilizing Aircraft Integrated Vehicle Health Management Systems for Maintenance Credit

2021-01-12
WIP
ARP7122
The processes outlined in this document cover the entire aircraft for both commercial and military applications. In addition to on-board systems, it covers on-ground elements as well. The practical application of this standardized process is detailed in the form of a checklist. As in all HM-1 documents, the scope of this document covers sensing and acquisition systems, typically on board, data transmission systems and processes, methods and hardware for data analysis, and finally, maintenance actions. The on-board aspects relating to safety of flight, pilot notification, etc., are addressed by the other SAE Committees standards and documents. To help explain the process and the use of the checklist, some high-level use cases related to maintenance credit applications are included.
Research Report

Unsettled Technology Domains for Rapid and Automated Verification of Industry 4.0 Machine Tools

2020-09-29
EPR2020019
Currently, inaccuracies in machine tools are often not detected until after they have produced nonconforming parts, causing reworking or scrap. For high-value aerospace parts, a single rejected part is a significant cost. Low-value parts are often inspected less frequently, allowing many nonconforming parts to be produced before the issue is detected, also resulting in high cost. The alternative to relying on part inspection is to run frequent tests on the machine itself, but established calibration and health-check processes take between 20 minutes and several days. Emerging rapid and automated verification (RAV) processes enable machine tools to check their performance automatically in just a few minutes. These RAV processes can be performed frequently throughout the day, allowing machines to operate without human intervention for long periods of time. When an issue is detected, the machine may be able to recalibrate and then continue automatically.
Standard

Thermoelectric Circuits and the Performance of Several Aircraft Engine Thermocouples

2023-03-21
WIP
AIR65A
The NET EMF of a thermoelectric circuit can be thought of as originating entirely in the regions of temperature gradient. Any extraneous materials, such as switch or connector terminals, in a temperature gradient may cause an error in the temperature measurement. In addition to circuitry errors, jet engine thermocouple indications require correction for the effects of conduction, radiation, response rate, and gas velocity. The magnitudes of the corrections depend on the thermocouple design and the environmental conditions. Performance curves for several typical jet engine thermocouples are presented, with the methods of making the various corrections.
Technical Paper

The Utilization of Artificial Intelligence for Turboprop Maintenance

1994-10-01
942152
This paper shows the methods, techniques and codes developed as Artificial Intelligence tools for turboprop maintenance. Diagnostics is the main area of maintenance considered while Expert Systems and Back Propagation Neural Networks are the Artificial Intelligence subjects discussed. The codes allow consideration of the turboprop with different configurations. The Knowledge Base of Expert Systems and the training patterns of Neural Networks are obtained from the matrices of influence obtained through massive use of engine simulation programs. The paper shows examples of both Expert System and Neural Network utilization.
Standard

The Preparation and Use of Thermocouples for Aircraft Gas Turbine Engines

2022-09-14
CURRENT
AIR46C
This SAE Aerospace Information Report (AIR) reviews the precautions that must be taken and the corrections which must be evaluated and applied if the experimental error in measuring the temperature of a hot gas stream with a thermocouple is to be kept to a practicable minimum. Discussions will focus on Type K thermocouples, as defined in National Institute of Standards and Technology (NIST) Monograph 175 as Type K, nickel-chromium (Kp) alloy versus nickel-aluminium (Kn) alloy (or nickel-silicon alloy) thermocouples. However, the majority of the content is relevant to any thermocouple type used in gas turbine applications.
Standard

Temperature Measuring Devices Nomenclature

2024-01-24
WIP
ARP485B
This SAE Aerospace Recommended Practice (ARP) defines the nomenclature of temperature measuring devices. General temperature measurement related terms are defined first, followed by nomenclature specifice to temperature measuring devices, particularly thermocouples.
Journal Article

Supervised Learning Classification Applications in Fault Detection and Diagnosis: An Overview of Implementations in Unmanned Aerial Systems

2022-08-18
Abstract Statistical machine learning classification methods have been widely used in the fault detection analysis in several engineering domains. This motivates us to provide in this article an overview on the application of these methods in the fault diagnosis strategies and also their successful use in unmanned aerial vehicles (UAVs) systems. Different existing aspects including the implementation conditions, offline design, and online computation algorithms as well as computation complexity and detection time are discussed in detail. Evaluation and validation of these aspects have been ensured by a simple demonstration of the basic classification methods and neural network techniques in solving the fault detection and diagnosis problem of the propulsion system failure of a multirotor UAV. A testing platform of an Hexarotor UAV is completely realized.
Technical Paper

Subsonic Panel Methods - Second (Order) Thoughts

1998-09-28
985563
VSAERO, a subsonic panel method, has grown from a maximum of 1000 panels (unknowns) to the routine use of 10000 panels to model aircraft such as an MD-11 with deployed slats and flaps. The increasing complexity required improvements in user-friendliness including: a robust flow solver; graphical interfaces to generate input and visualize output; algorithms which produce correct results (within the assumptions of potential flow); diagnostics to signal when the assumptions are violated; increased versatility with body wakes and jet exhausts; and multiple ways of generating a model.
Technical Paper

Studies On A Helical Magnetic Flux Compression Generator

2000-10-31
2000-01-3617
The basic performance of a simple helical flux compression generator, driven by 200 g of high explosives, has been studied with current-voltage measurements and optical diagnostics. Emphasis has been put on the characterization of physical effects that limit the generator output with respect to, for instance, maximum achievable output current. Simulation of the electric current output with the commercial circuit simulator PSPICE shows that this generator exhibits an instantaneous flux loss of about 20 % in the low current mode. Based on dynamic magnetic field probe measurements, the complexity of the generator's magnetic field structure is briefly discussed.
Standard

Standard Exposed Junction Thermocouple for Controlled Conduction Errors in Measurement of Air or Exhaust Gas Temperature

2023-03-21
WIP
ARP690A
The thermocouple design recommended herein is presented as one for which the correction to the observed emf, because of thermal conduction along the stem and wires, is within the limits presented in the accompanying figure. On referring to the figure, it is seen that no restriction is placed upon the diameter of the thermocouple or stem, and the longitudinal dimensions are expressed in terms of wire and stem diameters. The type of stem, such as packed ceramic stick, refractory insulating tubing, etc., also is left open to choice. Thus the sizes of wires and supporting stems may be varied over wide ranges to match particular requirements where conduction errors are to be limited or controlled.
Standard

Special Considerations for the Application of IVHM to Autonomous Aircraft and Vehicles

2022-04-11
WIP
JA7214
This SAE Aerospace Recommended Practice (ARP) provides guidance to develop and assure validation and verification of IVHM systems used in autonomous aircraft, vehicles and driver assistance functions. IVHM covers a vehicle, monitoring and data processing functions inherent within its sub-systems, and the tools and processes used to manage and restore the vehicle’s health. The scope of this document is to address challenges and identify recommendations for the application of integrated vehicle health management (IVHM) specifically to intelligent systems performing tasks autonomously within the mobility sector. This document will focus on the core aspects of IVHM for autonomous vehicles that are common to both aerospace and automotive applications. It is anticipated that additional documents will be developed separately to cover aspects of this functionality that are unique to each application domain.
Technical Paper

Space Shuttle Main Engine Plume Diagnostics: OPAD Approach to Vehicle Health Monitoring

1993-09-01
932608
The process of applying spectroscopy to the Space Shuttle Main Engine(SSME) for plume diagnostics, as it exists today, originated at Marshall Space Flight Center in Huntsville, Alabama, and its implementation was assured largely through the efforts of Sverdrup, AEDC, in Tullahoma, Tennessee. This process, Optical Plume Anomaly Detection (OPAD), has formed the basis for various efforts in the development of in-flight plume spectroscopy and in addition produced a viable test stand vehicle health monitor. OPAD is based on the detection of anomalous atomic and molecular species in the SSME plume using two complete, stand-alone optical spectrometers. To-date OPAD has acquired data on 43 test firings of the SSME at the Technology Test Stand at MSFC. The purpose of this paper will be to provide an introduction to the OPAD system by discussing the process of obtaining data as well as the methods of examining and interpreting the data.
Standard

SHM Gap Analysis

2023-05-09
WIP
AIR7160
Perform a model based system engineering gap analysis of a Structural Damage Detection System complementary to Structural Health Management based on selected generic use cases covering E2E product life cycle (design, development, manufacturing, integration, deployment and operation).
Technical Paper

Revalidation of the Volatile Organic Analyzer Following a Major On-Orbit Maintenance Activity

2007-07-09
2007-01-3220
The Volatile Organic Analyzer (VOA) provided valuable data on the gaseous trace contaminants in the atmosphere of the International Space Station (ISS) from January 2002 through May 2003. The VOA has two analytical channels that provide redundancy, but fuse failures caused the loss of one channel in January 2003 and the remaining channel in May 2003. In early 2005 on-orbit diagnostics verified failed fuses, and in December 2005 the fuses were replaced during an inflight maintenance (IFM) session. The VOA has provided data on the ISS atmosphere since it was reactivated in 2005. This paper summarizes the IFM procedures and presents the on-orbit data from 2006 that were used to revalidate the VOA.
Technical Paper

Remote Communication and Remote Diagnostics

1998-09-15
982134
With the increase in technical complexity of machine control systems, there is more demand than ever for field service technicians and engineers to be able to establish a remote communication link to the customer's machines for diagnostics and trouble shooting purposes. This paper will discuss current control architectures and explain Gemcor's approach to establishing remote communication to these technologies. The demonstration will explore making the connection over the Internet and direct phone lines.
X