Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Over the Rainbow”

1987-10-01
872499
To a large degree all of us at one time or another have envisioned our “Over the Rainbow” version of a future should be. System engineers envision perfect harmony between vehicle aerodynamics and avionics integration. The program manager dreams of schedules and funding well within the projected budget. Then reality; budget constraints, backward compatibility, technology availability, schedule problems, and etc. This paper is intended to recognize the “dreamer” and at the same time offer a means of reconciliation to the real world. We will address advanced avionics architectures and a transitionary means to attain our goals and objectives. An “Avionics System Index” will be presented which defines and specifies a means of describing and partitioned avionics configuration.
Technical Paper

“Insert and Fly” Using PCMCIA PC Cards in the Avionics Market

1994-11-01
942553
When looking into using PCMCIA PC Cards in the avionics market, three areas must be researched. The first is what are the applications and benefits of using the PC Cards while in flight, followed by the applications and benefits on the ground, and thirdly on how to make a PC Card that would stand up to the rugged avionics environment. PCMCIA PC Cards can be used in all aspects of flight. Three possible applications on the ground are; paperless documentation, modifications, flightline changes. Once airborne, PC Cards can be removed and a different functionality card can be inserted. One PC card socket can be used for many different functions during one flight. Some of the possible applications for PC Cards inflight are; flight plan changes, backup Line Replaceable Units (LRUs), and solid state data collection.
Technical Paper

‘Bigelow Aerospace® Life Support Laboratory - Planning and Status’

2004-07-19
2004-01-2474
This Life Support Laboratory consists of a simulator of the spacecraft called Nautilus, which houses Air Revitalization Subsystem, Atmospheric Control and Supply, and Fire Detection and Suppression in the Equipment Area. There are supporting facilities including a Human Metabolic Simulator, simulated Low and Moderate Temperature Coolant Loop, chemical analysis bench, purified water supply, vacuum and gas supplies. These facilities are scheduled to be completed and start to operate for demonstration purposes by March 2005. There are an ARES Ground Model (AGM) and a Trace Contaminant Control Assembly in the ARS. The latter will be integrated with the AGM and a Condensing Heat Exchanger. The unit of AGM is being engineered, built, and will be delivered in early 2005 by EADS Space Division. These assemblies will be operated for sensitivity analysis, integration and optimization studies. The main goal is the achievement for optimal recovery of oxygen.
Technical Paper

eROSITA Camera Low Temperature Thermal Control

2008-01-29
2008-01-1957
eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is a powerful X-ray telescope under development by the Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany. eROSITA is the core instrument on the Russian SRG1 mission which is planned for launch in 2011. It comprises seven nested Wolter-I grazing incidence telescopes, each equipped with its own CCD camera. The mirror modules have to be maintained at 20°C while the cameras are operated at -80°C. Both, mirrors and CCDs have to be kept within tight limits. The CCD cooling system consists of passive thermal control components only: two radiators, variable conductance heat pipes (VCHP) and two special thermal storage units. The orbit scenario imposes severe challenges on the thermal control system and also on the attitude control system.
Technical Paper

design problems of VERY HIGH SPEED FLIGHT

1959-01-01
590069
THIS PAPER is concerned with design problems which are encountered on manned aircraft operating at very high speeds. Very high speeds are considered to be from Mach 2 or 1300 mph to speeds of the order of Mach 38 or 25,000 mph, which is the velocity for escape from the earth. Mach 2 is considered a logical starting point since it represents the approximate upper limit of present day military aircraft. Manned aircraft will continue to be developed for flight at very high speed and high altitudes and the experiences gained will serve as stepping stones to eventual manned satellites and space vehicles. The major problems to be solved relate to aerodynamic heating, stability and control, and human effects. This paper received the 1958 Wright Brothers Medal.
Technical Paper

considerations of some JET-DEFLECTION PRINCIPLES for - - directional control - - lift

1958-01-01
580062
THE performance characteristics of various devices applicable for jet directional control, lift augmentation, and VTOL-STOL studied at the NACA Lewis Laboratory are discussed, including jet deflection devices applicable to the conventonal round nozzle and novel nozzle configurations. The results indicate that many of the deflection devices applicable to conventional nozzles can readily be used for directional control or lift augmentation. Other deflection devices, such as movable plug, internal flap, cylindrical thrust reverser, swiveled primary with fixed shroud, and 90 deg side-bleed nozzle, are limited in application to jet directional control or aircraft trim because the loss in axial thrust for a given deflection force is prohibitive or the maximum deflected force obtainable is limited.
Technical Paper

Zero-Venting, Regenerable, Lightweight Heat Rejection for EVA Suits

2005-07-11
2005-01-2974
Future space exploration missions will require a lightweight spacesuit that expends no consumables. This paper describes the design and performance of a prototype heat rejection system that weighs less than current systems and vents zero water. The system uses regenerable LiCl/water absorption cooling. Absorption cooling boosts the heat absorbed from the crew member to a high temperature for rejection to space from a compact, non-venting radiator. The system is regenerated by heating to 100°C for two hours. The system provides refrigeration at 17°C and rejects heat at temperatures greater than 50°C. The overall cooling capacity is over 100 W-hr/kg.
Standard

Zero Acceptance Number Sampling Procedures and Tables for Inspection by Attributes of A Continuous Manufacturing Process

2015-07-01
CURRENT
EIA584
Conventional attribute sampling plans based upon nonzero acceptance numbers are no longer desirable. In addition, emphasis is now placed on the quality level that is received by the customer. This relates directly to the Lot Tolerance Percent Defective (LTPD) value or the Limiting Quality Protection of MIL-STD-105. Measuring quality levels in percent nonconforming, although not incorrect, has been replaced with quality levels measured in parts per million (PPM). As a result, this standard addresses the need for sampling plans that can augment MIL-STD-105, are based upon a zero acceptance number, and address quality (nonconformance) levels in the parts per million range. This document does not address minor nonconformances, which are defined as nonconformances that are not likely to reduce materially the usability of the unit of product for its intended purpose.
Technical Paper

YA-10B Single Seat Night Attack: Lessons Learned

1984-10-01
841632
This paper presents lessons learned from flight testing of the YA-10B Single Seat Night Attack (SSNA) testbed. The generic night attack avionics suite in the YA-10B was used to provide a workload baseline for use in future night attack programs. Pilot rating scales and physiological data were used to construct the workload data base.
Technical Paper

XB-70A Mach 3 Design and Operating Experience

1966-02-01
660274
The XB-70A represents the most advanced example of the evolution and technological advances of manned aircraft in the past decade. It is, in effect, the forerunner of SST type aircraft and in itself is responsible for many items or features that have been subsequently embodied in contemporary military aircraft. This paper describes the unique aerodynamic concepts and configuration of the XB-70A and its airborne systems. Results of the current flight test program are summarized along with discussions on “gremlin” areas during fabrication and flight testing, and how they were or are being solved. Examples of improvements in air vehicle No. 2 as a result of air vehicle No. 1 experience are presented, including a summary of major system reliability demonstrated during the flight test program as an indicator of the potential refinements in cost and performance possible for future large high-speed aircraft.
Technical Paper

X-Wing: A Low Disc-Loading V/STOL for the Navy

1985-10-01
851772
The X-Wing concept employs a single lifting system for all modes of flight. The lifting system is comprised of four very rigid, circulation control wings with blowing for lift modulation and control. For hover and low speed flight, the wings rotate such as the rotor of a helicopter. For high speed flight, the wings are stopped in an “X” configuration across the fuselage - from which the name of the concept is derived - with two forward-swept wings and two aft-swept wings. Such a vehicle is also envisioned to have an integrated gas turbine propulsive system for all flight modes. At low speeds, the gas generators) would drive a shaft to turn the wings and the circulation control compressor as well as a set of propulsive fans. For high-speed flight, the shaft would drive only the compressor and accessories as the fans propel the vehicle. The X-Wing concept has been underdevelopment for over 15 years.
Technical Paper

X-29A Subsystems Integration - An Example for Future Aircraft

1988-10-01
881504
The X-29A is the first X-series experimental aircraft developed in the United States since the mid-sixties. The X-29A is a technology demonstrator aircraft that integrates several different-technologies into one airframe. Among the technologies demonstrated are the aeroservoelastically tailored composite forward swept wings, close coupled canards, discrete variable camber wing, triplex digital flight control system with analog backup, thin supercritical wing, three surface pitch control, large negative static margin and the integration of these technologies into the X-29 airframe. This paper deals with the issue of technology integration of five of the X-29A subsystems and the early design decision to use existing aircraft, components whenever and wherever possible. The subsystems described are the X-29 aircraft Hydraulics System, the Electrical Power System, the Emergency Power System, the Aircraft Mounted Accessory Drive and the Environmental Control System.
Technical Paper

X-29 High AOA Flight Test Results: An Overview

1993-04-01
931367
An extensive high angle-of-attack (AOA) flight testing program has been performed with the X-29-2 (AF 82-0049) forward swept wing research aircraft. The high AOA envelope expansion phase cleared the aircraft to fly in a broad flight regime and produced important data on the high AOA clearance process and data analysis. Lessons learned during the military utility phase on the tactical advantages and disadvantages associated with high AOA maneuvering are impacting programs such as the X-31, HARV, and F-22. Insight on the critical forebody flow-field of the X-29 at high AOA was gained using on-surface pressure measurements and off-surface flow visualization during the aerocharacterization phase. The Vortex Flow Control (VFC) experiment conducted on the X-29 successfully proved the viability of a pneumatic blowing device manipulating forebody vortices to act as an aircraft controller, an historical first.
Standard

Wrench, Spanner

2021-07-28
CURRENT
AS6018A
This SAE Aerospace Standard (AS) covers adjustable and non-adjustable spanner wrenches generally used for aerospace machinery maintenance and for tightening and loosening hose couplings and hydrant caps. Inclusion of dimensional data in this document is not intended to imply all of the products described therein are stock production sizes. Consumers are requested to consult with manufacturers concerning lists of stock production sizes.
Standard

Wrench, Spanner

2013-05-28
HISTORICAL
AS6018
This SAE Aerospace Standard (AS) covers adjustable and non-adjustable spanner wrenches generally used for aerospace machinery maintenance and for tightening and loosening hose couplings and hydrant caps. Inclusion of dimensional data in this document is not intended to imply all of the products described therein are stock production sizes. Consumers are requested to consult with manufacturers concerning lists of stock production sizes.
Technical Paper

Working Out of Heat Pipes for Low Temperature Radiative Cooling Systems for Space Optic Sensors

1996-07-01
961603
The substantiation of heat pipe usage in passive radiative cooling systems on temperature level (190…240) K for space optical sensors is presented. Heat pipes can be sound practice like heat conducting lines between sensor and radiator particularly at distances more 0.2 m and irreplaceable at distances (0.5…2) m. Embedding heat pipe with radiator allows to create the uniform temperature basis in case of several sensors connection to single radiator and to improve radiator efficiency. It is analyzed approach to design of thermocontrol and cooling radiative systems with heat pipes to reduce sensitiveness to external light disturbances and to enlarge area of radiative system application. The results of design, thermovacuum test and flight operation of thermocontrol radiative system samples are under discussion as well.
X