Refine Your Search

Search Results

Technical Paper

Transport Processes within a Hollow Fiber Membrane Reactor: Mass Transfer and Hydrodynamics

2007-07-09
2007-01-3093
Hollow fiber membrane reactors (HFMBRs) may be used for biological wastewater treatment, and may be integrated with NASA's current research developments. The goal of this paper is to (a) evaluate the effect of mass transfer and hydrodynamics in a microporous HFMBR and (b) appropriateness of HFMBRs for use in space applications. Even though bubble-less aeration was not achieved by the use of microporous membranes, mass transfer within the HFMBR was found to increase after biofilm formation. Conversely, convective flow dominated transport within the system. Despite the high treatment efficiency obtained by the HFMBR, due to the bioreactor size, configuration and membrane spacing within the HFMBR, the bioreactor was not a suitable option for application under microgravity conditions. Even though developing a system with more favorable system hydrodynamics would aid in treatment efficiency, the use of a microporous HFMBR is not a recommended option to meet NASA's needs.
Journal Article

The Analysis of a Modified Membrane-Aerated Biofilm Reactor for Space Flight Applications

2008-06-29
2008-01-2016
A modified membrane-aerated biofilm reactor (mMABR) was constructed by incorporating two distinct biofilm immobilization media: gas-permeable hollow fiber membranes and high surface area inert bio-media. In order to evaluate the mMABR for space flight applications, a synthetic ersatz early planetary base (EPB) waste stream was supplied as influent to the reactor, and a liquid loading study was conducted at three influent flow rates. On average, percent carbon removal ranged from 90.7% to 93.1% with volumetric conversion rates ranging from 25 ± 3.3 g / m3 d and 95 ± 13.4 g / m3 d. Simultaneous nitrification/denitrification (SND) was achieved in a single reactor. As the liquid loading rate increased from 0.15 mL/min to 0.45 mL/min, the volumetric denitrification rates elevated from 27 ± 3.3 g / m3 d to 65 ± 5.2 g / m3 d. Additionally, it was found that nitrification and denitrification were linearly related with respect to both percent efficiency and volumetric reaction rates.
Technical Paper

Selenium Coating of Water Distribution Tubing to Inhibit Biofilm

2008-06-29
2008-01-2158
Microbial control in closed environmental systems, such as those of spacecraft or proposed base missions is typically limited to disinfection in the potable water system by a strong chemical agent such as iodine or chlorine. However, biofilm growth in the environmental system tubing threatens both the sterility of the potable water distribution as well as operational problems with wastewater systems. In terrestrial systems, biofilm has been recognized for its difficulty to control and eliminate as well as resulting operational problems. In order to maintain a potable water source for crew members as well as preventing operational problems in non-sterile systems, biofilm needs to be considered during system design. While biofilm controls can limit biofilm buildup, they are typically disruptive and cannot completely eliminate biofilm. Selenium coatings have shown to prevent initial biofilm attachment as well as limit attached growth on a variety of materials.
Technical Paper

Regenerative Water Recovery System Testing and Model Correlation

1997-07-01
972550
Biological wastewater processing has been under investigation by AlliedSignal Aerospace and NASA Johnson Space Center (JSC) for future use in space. Testing at JSC in the Hybrid Regenerative Water Recovery System (HRWRS) in preparation for future closed human testing has been performed. Computer models have been developed to aid in the design of a new four-person immobilized cell bioreactor. The design of the reactor and validation of the computer model is presented. In addition, the total organic carbon (TOC) computer model has been expanded to begin investigation of nitrification. This model is being developed to identify the key parameters of the nitrification process, and to improve the design and operating conditions of nitrifying bioreactors. In addition, the model can be used as a design tool to rapidly predict the effects of changes in operational conditions and reactor design, significantly reducing the number and duration of experiments required.
Technical Paper

Performance of a Small Scale Biological Water Recovery System

2003-07-07
2003-01-2557
The objective of this study was to evaluate the treatment efficiency and reliability of a small-scale (1/20th) replica of the JSC biological treatment system over an extended period of time (18 months of operation). The two biological reactor components were an anaerobic packed bed for denitrification and an aerobic tubular reactor for nitrification. A recycle line (20X) linked the two biological reactors. Effectiveness of the biological system to treat a waste stream (1 L/day) containing water, urine, and soap (Igepon T42) was quantified by monitoring total nitrogen and organic carbon. Distribution of nitrogen in the effluent was measured and consisted of ammonium, nitrite, and nitrate. Daily concentrations of total nitrogen in the influent varied greatly. The system achieved 50% removal of total nitrogen and 80% removal of the influent organic carbon. The results indicate improved treatment effectiveness and resiliency with time.
Technical Paper

Optimum Loading Rates and Design Limitations of Biological Reactors for Long-Term Space Habitation Waste Streams

2005-07-11
2005-01-2979
Biological pre-treatment of liquid waste could potentially offer equivalent mass savings for long term space habitation. However, limited engineering studies have been performed to determine the optimum loading rates or to fully characterize (limiting reactants) the biochemical transformations occurring within the reactors. The objective of these studies was to provide loading rate data on a proposed and well studied reactor configuration. All studies were performed using a simulated early planetary base waste stream. Results indicate that the reactor’s efficiency is greater than typical terrestrial reactors and that transformation is limited by non-kinetic parameters.
Technical Paper

Nitrification using a Membrane-Aerated Biological Reactor

2003-07-07
2003-01-2559
When compared to physical and chemical processes for wastewater treatment in space, the benefits of biological systems include reduced storage and handling of waste material, lower energy requirements and plant growth system compatibility. An advanced membrane reactor (AMR) was constructed to treat ammonium-rich simulated wastewater. The effluent pH was approximately 6.3, and ammonium and TOC reduction rates were greater than 60 percent and 99 percent, respectively. The experimental results demonstrate that this technology may be suitable for space applications. However, the long-term performance of these systems should be investigated.
Technical Paper

Modeling a Biological Closed Loop Water Recycling System for Prolonged Manned Space Flight

2004-07-19
2004-01-2511
For prolonged manned spaceflight, recycling of wastewater is critical to minimize payload costs. We have constructed a pilot-scale, closed-loop water recycling system (CLWRS). Due to slow process dynamics, evaluation of multiple experimental scenarios is very time-consuming. To accelerate evaluation, we have developed mathematical models of the individual reactors, as well as a process model of the pilot plant, which combines nitrification, denitrification, recycle, and degassing steps. The simulation accurately reproduces the 35% total nitrogen (TN) reduction observed experimentally at a 20/1 recycle ratio. Both experiments and simulations indicate that biological CLWRS have significant potential for long-duration manned space flight.
Technical Paper

Lunar-Mars Life Support Test Project Phase III Water Recovery System Operation and Results

1998-07-13
981707
An integrated water recovery system was operated for 91 days in support of the Lunar Mars Life Support Test Project (LMLSTP) Phase III test. The system combined both biological and physical-chemical processes to treat a combined wastewater stream consisting of waste hygiene water, urine, and humidity condensate. Biological processes were used for primary degradation of organic material as well as for nitrification of ammonium in the wastewater. Physical-chemical systems removed inorganic salts from the water and provided post-treatment. The integrated system provided potable water to the crew throughout the test. This paper describes the water recovery system and reviews the performance of the system during the test.
Technical Paper

Integrated Water Recovery System Test

2003-07-07
2003-01-2577
The work presented in this paper summarizes the performance of subsystems used during an integrated advanced water recovery system test conducted by the Crew and Thermal Systems Division (CTSD) at NASA-Johnson Space Center (JSC). The overall objective of this test was to demonstrate the capability of an integrated advanced water recovery system to produce potable quality water for at least six months. Each subsystem was designed for operation in microgravity. The primary treatment system consisted of a biological system for organic carbon and ammonia removal. Dissolved solids were removed by reverse osmosis and air evaporation systems. Finally, ion exchange technology in combination with photolysis or photocatalysis was used for polishing of the effluent water stream. The wastewater stream consisted of urine and urine flush water, hygiene wastewater and a simulated humidity condensate.
Technical Paper

Incorporation of a Membrane-Aerated Bioreactor in a Water Recovery System

2004-07-19
2004-01-2461
The objective of this study was to investigate the potential of membrane-aerated bioreactors as long term microgravity compatible nitrifying biological water processors (BWP). A small-scale (1/20th) replica of the water recovery system (WRS) at JSC has been operated and extensively analyzed at Texas Tech University (TTU) for the last 3 years. The current nitrifying tubular reactor at JSC and TTU has experienced difficulty in maintaining efficiency and low maintenance. In an attempt to increase the efficiency of the biological portion of the WRS, a membrane-aerated bioreactor (MABR) was constructed and operated using the same parameters as the TTU-WRS in August 2003. The MABR is downstream of an anaerobic packed bed and is designed to promote nitrification (NH4 → NOx). The MABR achieved a percent nitrification of 61% and 55% for recycle ratios of 10 and 20, respectively.
Technical Paper

Evaluation of Performance of Five Parallel Biological Water Processors

2004-07-19
2004-01-2515
A series of studies examined bacterial diversity and consortial stability in an anoxic bioreactor and correlated diversity and stability with functional performance, mechanical reliability, and stability. The evaluation was divided into four studies. During Study 1, replicate biological water processor (BWP) systems were operated to evaluate variability in the microbial diversity over time as a function of the initial consortia used for inoculation of the BWP reactors. Study 2 was designed to investigate the impact of an inoculum source on BWP performance. Study 3 was a modification of Study 2 where the primary focus was BWP performance and consortia change from inoculation until steady state operations. In Study 4, the reactors were divided into three different operational periods, based on the operational periods of the integrated water recovery test at the Johnson Space Center (JSC) in 2001.
Technical Paper

Effect of Recycle Ratio on the Performance of Biological Water Recovery System

2004-07-19
2004-01-2468
Biological pre-treatment of liquid waste could potentially offer equivalent mass savings for long term space habitation. Previous work has demonstrated the technological feasibility. However, limited work has been conducted on optimizing the biological reactors or fully characterizing the biochemical transformations occurring within the reactors. The objective of these studies was to provide long-term operating data on a proposed and well studied reactor configuration, and explore the effects of RR on system performance. The water recovery system has been in successful operation for over 2 years. Data to be presented will include both typical removal efficiencies for nitrogen species, DOC as well as important water quality parameters. In addition the effect of recycle ratio (2X, 5X, 10X, and 20X) will be quantified.
Technical Paper

Early Results of an Integrated Water Recovery System Test

2001-07-09
2001-01-2210
The work presented in this paper summarizes the early results of an integrated advanced water recovery system test conducted by the Crew and Thermal Systems Division (CTSD) at NASA-Johnson Space Center (JSC). The system design and the results of the first two months of operation are presented. The overall objective of this test is to demonstrate the capability of an integrated advanced water recovery system to produce potable quality water for at least six months. Each subsystem is designed for operation in microgravity. The primary treatment system consists of a biological system for organic carbon and ammonia removal. Dissolved solids are removed by reverse osmosis and air evaporation systems. Finally, ion exchange technology in combination with photolysis or photocatalysis is used for polishing of the effluent water stream. The wastewater stream consists of urine and urine flush water, hygiene wastewater and a simulated humidity condensate.
Technical Paper

Development of a Gravity Independent Nitrification Biological Water Processor

2003-07-07
2003-01-2560
Biological water processors are currently being developed for application in microgravity environments. Work has been performed to develop a single-phase, gravity independent anoxic denitrification reactor for organic carbon removal [1]. As a follow on to this work it was necessary to develop a gravity independent nitrification reactor in order to provide sufficient nitrite and nitrate to the organic carbon oxidation reactor for the complete removal of organic carbon. One approach for providing the significant amounts of dissolved oxygen required for nitrification is to require the biological reactor design to process two-phase gas and liquid in micro-gravity. This paper addresses the design and test results overview for development of a tubular, two-phase, gravity independent nitrification biological water processor.
Technical Paper

Development and Testing of Membrane Biological Wastewater Processors

1999-07-12
1999-01-1947
Ground-based laboratory and closed-chamber human tests have demonstrated the ability of microbial-based biological processors to effectively remove carbon and nitrogen species from regenerable life support wastewater streams. Application of this technology to crewed spacecraft requires the development of gravity-independent bioprocessors due to a lack of buoyancy-driven convection and sedimentation in microgravity. This paper reports on the development and testing of membranebased biological reactors and addresses the processing of planetary and International Space Station (ISS) waste streams. The membranes provide phase separation between the wastewater and metabolically required oxygen, accommodate diffusion-driven oxygen transport, and provide surface area for microbial biofilm attachment. Testing of prototype membrane bioprocessors has been completed.
Technical Paper

Determining the Effect of Usage and Biota Upon Oxygen Flux Across Tubular Silicone Membranes

2007-07-09
2007-01-3092
Hollow fiber membranes aerate wastewater without bubble formation by separating the liquid and gases phases with a semi-permeable membrane. These membranes have shown to successfully create aerobic conditions within a biological reactor. This research investigated the effect of long term usage and biofilm growth on membrane's ability to transfer oxygen to solution. Results show that oxygen transfer across the membrane decreased significantly compared to unused membranes in areas of high biofilm growth while low biofilm growth showed only slight decreases.
Technical Paper

Determination of the Fate and Behavior of a Commercial Surfactant in a Water Recycle System (WRS)

2003-07-07
2003-01-2558
Bioreactor studies and microcosm experiments were conducted to determine the degradation potential of a commercial cleansing formulation. With the possible replacement of the current cleansing formulation under consideration (Ecolab whole body shampoo containing Igepon TC-42™ as an active ingredient), determination of the degradation characteristics of the alternative formulation is necessary. The commercial formulation currently being evaluated is a modified version of Pert Plus® for Kids (PPK). The degradation potential of the PPK and main surfactant Sodium Laureth Sulfate (SLES) was determined in a packed bed denitrifying bioreactor. Results from the bioreactor studies led to the development of stoichiometric relationships to help predict and monitor SLES degradation. In addition to the degradation rates of Ecolab, the PPK formulation, as well as the four leading constituents contained in the PPK formulation was determined under denitrifying conditions in microcosm studies.
Technical Paper

Chive Growth in Biologically Treated Early Planetary Base Wastewater

2005-07-11
2005-01-2822
The purpose of this study was to evaluate the viability of treating wastewater through edible plant hydroponics. After the harvest in the hydroponic experiment (32 day study period), plant yield for edible biomass (corresponds to the harvested leaves) in wastewater and hydrosol (control) were 0.131 kg/m2 and 0.104 kg/m2, respectively. Potassium, TDS, and TN showed decreasing trends in hydrosol and wastewater during the experiment. Nitrification was observed in the wastewater unit with a significant increase (92.5%) in nitrate mass. Nitrite and ammonium mass in wastewater decreased with time, while hydrosol had negligible amounts of nitrite and ammonium during the study period. Calcium and magnesium masses decreased in the control and increased in wastewater. Wastewater showed a decrease in the mass of TOC (19.7%), while the hydrosol had negligible mass with respect to TOC.
Technical Paper

Biologically Treated Wastewater for NFT Plant Production in Space

2003-07-07
2003-01-2681
This research compared the nutrient content of the Biological Water Processor (BWP) effluent at JSC with acceptable nutrient ranges for general hydroponic NFT-solutions. Evaluated nutrient-components were NO3-N, P, K, Ca, Mg, Fe, Mn, Zn, B, Cu and Mo. Compared to Cooper's and Molyneaux's solution (Jones, 1997) BWP-nutrient concentrations were low for Ca, Mg, Fe and B. Compared to the NFT-solution used at KSC (Wheeler et al., 1997), the BWP-effluent showed higher contents of P, K, Zn, Cu and Mo and lower contents of N, Ca, Mg, Fe and B. This indicates that the BWP-effluent could support NFT-plant production.
X