Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Analysis of Ice Release from a Rotating Propeller

2015-06-15
2015-01-2079
The introduction of ice-phobic coatings promises to allow passive ice protection systems to be developed particularly for rotating systems such as propellers. The centrifugal force field combined with reduced adhesive strength can produce a self-shed capability limiting the amount of ice build-up. The size and shed time of ice shed from a propeller is predicted using a process that determines ice shape, ice growth rate and both internal and ice-structure interface stresses. A simple failure model is used to predict the onset of local failure and to propagate damage in the ice until local ice shedding is obtained. Recommendations are made on developing the model further.
Technical Paper

A Complementary Framework to Predict Ice Adhesion Failure

2023-06-15
2023-01-1456
Ice adhesion characterization relies heavily on experimental data, especially when dealing with fracture parameters. In this paper, a complementary framework encompassing experimental testing with the numerical treatment of the fracture variables is proposed to provide a physical description of adhesive fracture propagation at the interface of an iced structure. The tests are based on a quasi-static flexural testing setup composed of a displacement-driven actuator and an iced plate. The measured crack length and plate deflection provide the data to be analyzed by the Virtual Crack Closure Technique in order to approximate the critical energy release rate required to study adhesive fracture propagation. The critical energy release rate in mode II is under-predicted and its value is approximated using its counterpart in mode I.
X