Refine Your Search

Search Results

Standard

TRAFFIC COMPUTER, ACAS-X, AND ADS-B FUNCTIONALITY

2022-11-02
CURRENT
ARINC735C
This document describes Airborne Collision Avoidance System X (ACAS X) functionality and provides the necessary interface definitions and protocols to accommodate the requirements of RTCA DO-385: Minimum Operational Performance Standards for Airborne Collision Avoidance System X (ACAS X) ACAS Xa and ACAS Xo) (latest version applies) and the requirements of RTCA DO-386: Minimum Operational Performance Standards for Airborne Collision Avoidance System X (ACAS X) ACAS Xu (latest version applies). Additionally, this document describes interfaces and protocols necessary to accommodate Cockpit Display of Traffic Information (CDTI) based on the reception of Automatic Dependent Surveillance-Broadcast (ADS-B) data and Traffic Information Services–Broadcast (TIS-B) data. The equipment becomes ACAS X with ADS-B IN applications added, as defined by RTCA DO-317C: Minimum Operational Performance Standards for (MOPS) for Aircraft Surveillance Applications (ASA) Systems (latest version applies).
Standard

TERRAIN AWARENESS AND WARNING SYSTEM (TAWS)

2000-09-15
CURRENT
ARINC762-1
This standard sets forth the characteristics of a terrain awareness and warning system intended for installation in aircraft with digital signal interfaces. Describes the desired operational capability of the equipment, the standards necessary to ensure interchangeability, form factor, and pin assignments.
Standard

TERRAIN AWARENESS AND WARNING SYSTEM ((TAWS) - ANALOG

2001-12-12
CURRENT
ARINC562
Terrain Awareness and Warning System (TAWS)ý Analog addresses the need for standard TAWS installations in older aircraft that have analog equipment interfaces. The analog unit is intended as a replacement for ARINC Characteristic 594: Ground Proximity Warning System (GPWS) equipment. The document is intended to compliment ARINC Characteristic 762: Terrain Awareness and Warning System (TAWS) for later model aircraft having digital equipment interfaces.
Standard

STANDARD DATA INTERFACE FOR GALLEY INSERT (GAIN) EQUIPMENT PART 1 CAN COMMUNICATIONS

2014-08-26
CURRENT
ARINC812AP1-1
The purpose of this specification is to define the general Galley Insert (GAIN)standardization philosophy, provide comprehensive equipment interfaces, and disseminate the most current industry guidance. Part 1 covers the Controller Area Network (CAN) data interface attachments, envelopes, and data content to be considered between all galley equipment using a Galley Data Bus as described within this specification. This document is intended as the successor and replacement for ARINC Specification 812. This document contains significant improvements to CAN data interfaces.
Standard

STANDARD DATA INTERFACE FOR GALLEY INSERT (GAIN) EQUIPMENT PART 1 CAN COMMUNICATIONS

2021-09-10
CURRENT
ARINC812AP1-2
The purpose of this specification is to define the general Galley Insert (GAIN)standardization philosophy, provide comprehensive equipment interfaces, and disseminate the most current industry guidance. Part 1 covers the Controller Area Network (CAN) data interface attachments, envelopes, and data content to be considered between all galley equipment using a Galley Data Bus as described within this specification. This document is intended as the successor and replacement for ARINC Specification 812. This document contains significant improvements to CAN data interfaces.
Standard

RECORDER INDEPENDENT POWER SUPPLY

2010-10-11
CURRENT
ARINC777-2
This Characteristic provides the definitions for the physical form and fit dimensions, the electrical interfaces, and the functions of an independent power supply for cockpit voice recorders or crash survivable recorders that combine voice with other recording functions. The RIPS is used to provide backup power that is independent of the aircraft generated power buses. Supplement 2 introduces a description of charge rates for alternate power sources and revises the electrical interface to accommodate monitoring of the RIPS status.
Standard

QUICK ACCESS RECORDER FOR AIDS SYSTEM (QAR)

1972-07-26
CURRENT
ARINC591
This standard provides design guidance for development and installation of a QAR, whose basic functions are to store digital data supplied at the output of an ARINC 573 FDAU or other similar acquisition unit and provide an easy access to this stored data for systematic ground processing for performance monitoring, maintenance monitoring or other purposes.
Standard

PRECISION AIRBORNE DISTANCE MEASURING EQUIPMENT (DME/P)

1994-08-17
CURRENT
ARINC709A-1
This standard provides general and specific design guidance for the development of a DME/P, which provides slant range distance from an aircraft to a selected DME ground facility. For landing purposes, the DME/P complements the angle MLS/ILS with precise range data.
Standard

PORTABLE MULTI-PURPOSE ACCESS TERMINAL (PMAT)

1996-08-25
CURRENT
ARINC644A
The PMAT is intended for use in the airplane maintenance environment allowing remote access to onboard systems. This standard describes the aircraft interface, operational capabilities and standards necessary to achieve interoperability with onboard systems, stand-alone internal or external mass memory devices, and ARINC standard printers.
Standard

MARK I AVIATION KU-BAND AND KA-BAND SATELLITE COMMUNICATION SYSTEM PART 2 ELECTRICAL INTERFACES AND FUNCTIONAL EQUIPMENT DESCRIPTION

2014-07-28
CURRENT
ARINC791P2-1
This document provides the interface definition of the Satcom system. Any signal crossing into or out of the communication system is documented to ease aircraft integration. Signals within the ARINC 791 Satcom system, and in particular, between the Modman and the Antenna Subsystem, are described to permit interchangeability between any Modman and any Antenna Subsystem.
Standard

MARK 5 AIRBORNE DISTANCE MEASURING EQUIPMENT

1988-10-31
CURRENT
ARINC709-8
This standard sets forth characteristics of a DME intended for installation in commercial transport aircraft. It provides slant range distance from an aircraft to a selected DME ground facility, which is presented to the flight crew on an indicator located in the instrument panel. Other applications include utilization of frequency scanning modes by navigation computers.
Standard

MARK 4 AIR TRAFFIC CONTROL TRANSPONDER (ATCRBS/MODE S)

2011-11-15
CURRENT
ARINC718A-4
Mark 4 Air Traffic Control Transponder (ATCRBS/MODE S) describes an Air Traffic Control Radar Beacon System/Mode Select (ATCRBS/Mode S) airborne transponder with Extended Interface Functions (EIF). The ATC surveillance system is made up of airborne transponders and ground interrogator-receivers, processing equipment, and antenna systems. Mode S is a cooperative surveillance system for air traffic control with ancillary communications capabilities. ARINC 718A supports elementary surveillance. Provisional enhanced surveillance functionality is also defined as a customer option. The Mark 4 transponder, like its predecessor, will support TCAS functions.
Standard

MARK 4 AIR TRAFFIC CONTROL TRANSPONDER (ATCRBS/MODE S)

2022-10-07
CURRENT
ARINC718A-5
Mark 4 Air Traffic Control Transponder (ATCRBS/MODE S) describes an Air Traffic Control Radar Beacon System/Mode Select (ATCRBS/Mode S) airborne transponder with Extended Interface Functions (EIF). The ATC surveillance system is made up of airborne transponders and ground interrogator-receivers, processing equipment, and antenna systems. Mode S is a cooperative surveillance system for air traffic control with ancillary communications capabilities. ARINC 718A supports elementary surveillance. Provisional enhanced surveillance functionality is also defined as a customer option. The Mark 4 transponder, like its predecessor, will support Collision Avoidance System which includes TCAS and ACAS X functions.
Standard

MARK 3 AIR TRAFFIC CONTROL TRANSPONDER ATCRBS/MODE S)

1989-12-15
CURRENT
ARINC718-4
This document defines the Air Traffic Control Transponder (ATCRBS/Mode S) with that supports emerging Automatic Dependent Surveillance - Broadcast (ADS-B) requirements. Supplement 4 adds ADS-B Out capabilities and enables the Mode S Transponder to comply with Mode S Transponder MOPS (RTCA DO-181E and EUROCAE ED-73E) as entered into ICAO Annex 10 Volume IV and ICAO Doc. 9871.
Standard

GUIDANCE FOR USE OF AVIONICS EQUIPMENT AND SOFTWARE IN SIMULATORS

1999-02-15
CURRENT
ARINC610A-1
This standard preserves all of the technical concepts of ARINC 610. ARINC 610A encompasses the lessons learned since ARINC 610 was issued, provides additional information defining each simulator function and the responses required by each type, and creates guidance information relevant to Integrated Modular Avionics (IMA).
Standard

GUIDANCE FOR TOOL AND TEST EQUIPMENT (TTE) EQUIVALENCY

2015-08-01
CURRENT
ARINC735B-2
This document defines a Traffic Surveillance capability for NextGen and SESAR airspace environments. Supplement 2 adds hybrid surveillance functionality. It satisfies recent updates to FAA Airworthiness Circular AC 20-151B - Airworthiness Approval of Traffic Alert and Collision Avoidance Systems (TCAS II), and Technical Standard Order TSO-119d requiring the annunciation of a hybrid surveillance failure. Supplement 2 also adds strobe program pinning, updates TCAS inputs status, improves aircraft troubleshooting, and supports recent central maintenance computer function block point updates.
Standard

GUIDANCE FOR DESIGN AND INTEGATION AND AIRCRAFT AVIONICS EQUIPMENT IN SIMULATORS

1992-02-01
CURRENT
ARINC610-1
This standard sets forth general philosophy and design guidance for using aircraft avionics equipment in simulators. Its goal is to improve simulator training by providing a better understanding among avionics designers, simulator designers, airframe manufacturers and airline simulator users in the use of aircraft avionic equipment in flight simulators. Full flight simulator, cockpit procedure trainer, cockpit system simulator or fixed base simulator, part task trainer (e.g., flight management system trainer), and maintenance training simulator guidance is included.
Standard

GROUND PROXIMITY WARNING SYSTEM

1984-03-12
CURRENT
ARINC594-4
This standard sets forth the characteristics of a Ground Proximity Warning System (GPWS) designed for installation in commercial aircraft. The GPWS provides audible and visible warnings or alerts when an aircraft approaches terrain or deviates below the ILS glide slope beyond the limits set into the system.
Standard

GROUND PROXIMITY WARNING SYSTEM

1988-01-11
CURRENT
ARINC723-3
This standard sets forth the characteristics of a GPWS designed for installation in commercial aircraft. It aids pilots by providing audible and visible warnings or alerts when an aircraft approaches terrain more closely than, or deviates downward from an ILS glide slope beyond the limits set into the system.
X