Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wet-Oxidation Waste Management System for CELSS

1985-07-01
851398
A wet oxidation system will be useful in CELSS as a facility to treat organic wastes and to redistribute inorganic compounds and elements. However at rather higher temperatures needed in this reaction, for instance, at 260 °C, only 80% of organic carbon in a raw material can be oxidized, and 20% of it will remain in the liquid mainly as acetic acid, which is virtually non-combustible. Furthermore, nitrogen is transformed to ammonium ions which normally cannot be absorbed by plants. To resolve these problems, it becomes necessary to use catalysts. Noble metals such 33 Ru, Rh and so on have proved to be partially effective as these catalysts. That is, oxidation does not occur completely, and the unexpected denitrification, instead of the expected nitrification, occurs. So, it is essential to develop the catalysts which are able to realize the complete oxidation and the nitrification.
Technical Paper

Wet Oxidation of a Spacecraft Model Waste

1985-07-01
851372
Wet oxidation was used to oxidize a spacecraft model waste under different oxidation conditions. The variables studied were pressure, temperature, duration of oxidation, and the use of one homogeneous and three heterogeneous catalysts. Emphasis is placed on the final oxidation state of carbon and nitrogen since these are the two major components of the spacecraft model waste and two important plant nutrients.
Article

Weber Metals unveils new 540-meganewton press for aerospace components

2018-11-16
Weber Metals Inc., a division of Otto Fuchs KG of Germany, unveiled a new, $180 million, 60,000-ton press at its 2.5-acre facility in Paramount, California, southeast of Los Angeles. It sets a record as the highest tonnage hydraulic forging press in the Americas and the largest privately funded forging press investment in the world.
Technical Paper

Utilization of Solid Waste for Activated Carbon Production in Space

2003-07-07
2003-01-2372
Activated carbons have a unique capability of strongly absorbing a great variety of species, ranging from SO2 and NOx, to trace organics, mercury, and other heavy metals. Activated carbons can also be used for gas storage and gas separations, including systems of practical interest to NASA (e.g., CO2/N2/O2), and even for the purification of liquids. No single activated carbon is suitable for all applications, but appreciable control over sorbent properties can be exercised in the process of carbon preparation. Since activated carbons can be produced from a wide range of organic materials, including waste streams, the preparation of activated carbons on board spacecraft should involve a limited amount of additional resources, help manage on-board waste, and reduce the weight of materials to be launched from earth. The feasibility of producing waste-derived activated carbons suitable for SO2 and NO control was the subject of the current study.
Technical Paper

Utilization of Ruthenium and Ruthenium-Iron Alloys as Bosch Process Catalysts

1982-02-01
820875
The Bosch process has been considered as a means to recover oxygen, from metabolic carbon dioxide through the catalytic production of water. Previous investigations have shown that the oxide formation accounts for the limited activity of the iron catalyst. On the other hand, the maximum water concentrations achievable in the nickel and cobalt systems have been shown to correspond to the carbide formation. This paper presents the results of an experimental study carried out to determine the effectiveness of ruthenium and its alloy with iron as alternative Bosch catalysts. Carbon deposition boundaries over the alloy catalysts are reported.
Technical Paper

Urea-SCR Catalysts with Improved Low Temperature Activity

2011-04-12
2011-01-1315
Urea-SCR systems have become one effective method for meeting the ever tightening NOx emission control regulations for diesel engines. Higher activity of SCR catalysts in the low temperature region is crucial for meeting emission regulations and improving fuel economy. Some of the new catalytic components in the literature have shown good low temperature SCR activity, but they have not been fully confirmed to be durable enough for mobile applications. Fe-zeolite has been widely used in mobile applications due to its wide operating temperature window, but after exposure to large amounts of HCs at low temperatures, it is easily deactivated. We developed new SCR catalysts with improved low temperature activity and improved durability against HC fouling and thermal sintering by combining OSC (oxygen storage component) with Fe-zeolite.
Technical Paper

Ultra-Downsizing of ICEs Based on True Atkinson Cycle Implementations. Thermodynamic Analysis and Comparison on the Indicated Fuel Conversion Efficiency of Atkinson and Classical ICE Cycles

2024-04-09
2024-01-2096
Ultra-Downsizing (UD) was introduced as an even higher level of downsizing for Internal Combustion Engines ICEs, see [2] SAE 2015-01-1252. The introduction of Ultra Downsizing (UD) aims to enhance the power, efficiency, and sustainability of ICEs while maintaining the thermal and mechanical strain within acceptable limits. The following approaches are utilized: 1 True Atkinson Cycles are implemented utilizing an asymmetrical crank mechanism called Variable Compression and Stroke Ratios (VCSR). This mechanism allows for extended expansion stroke and continuous adjustment of the Volumetric Compression Ratio (VCR). 2 Unrestricted two or more stage high-pressure turbocharging and intensive intercooling: This setup enables more complete filling of the cylinder and reduces the compression work on the piston, resulting in higher specific power and efficiency. 3 The new Load Control (LC) approach is based to continuous VCR adjustment.
Journal Article

Two-Stage Electro Thermal Supported HC (Hydro Carbon) Conversion

2011-04-12
2011-01-0601
Many diesel engines have to work at load profiles which, due to the low exhaust gas temperatures, necessitate active regeneration procedures to ensure continued engine operation and the reliability of the particulate filter. An active regeneration may be initiated via inner engine measures such as late injection. However, due to high maintenance interval and run time requirements for non-road applications the combustion of soot accumulated in the diesel particulate filter (DPF) often is realized via downstream processes. Known methods for this purpose are burner systems, systems based on downstream hydrocarbon injection (HCI) and subsequent hydrocarbon (HC)-conversion due to a catalyst or a combination of both. This paper describes an autarkic system using two-stage electro-thermal-supported hydrocarbon conversion. This system is capable to regenerate a DPF within the entire engine operating range and it is less complex than flame burner systems.
Standard

Turboshaft/Turboprop Gas Turbine Engine Test Cell Correlation

2007-11-15
HISTORICAL
ARP4755A
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turboprop and turboshaft engines. This Aerospace Recommended Practice (ARP) shall apply to both dynamometer and propeller based testing. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine.
Standard

Turboshaft/Turboprop Gas Turbine Engine Test Cell Correlation

2023-05-19
CURRENT
ARP4755C
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turboprop and turboshaft engines. This Aerospace Recommended Practice (ARP) shall apply to both dynamometer and propeller based testing. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. Although no original equipment manufacturer (OEM) documents are actually referenced, the experience and knowledge of several OEMs contributed to the development of this document. Each engine manufacturer has their own practices relating to correlation and they will be used by those OEMS for the purpose of establishing certified test facilities.
Standard

Turboshaft/Turboprop Gas Turbine Engine Test Cell Correlation

2013-12-19
HISTORICAL
ARP4755B
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turboprop and turboshaft engines. This Aerospace Recommended Practice (ARP) shall apply to both dynamometer and propeller based testing. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine.
Standard

Turbofan and Turbojet Gas Turbine Engine Test Cell Correlation

2023-05-01
CURRENT
ARP741D
This SAE Aerospace Recommended Practice (ARP) describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turbofan and turbojet engines. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. When baseline testing is performed in an indoor test cell, the baseline performance data are adjusted to open air conditions. Although no original equipment manufacturer (OEM) documents are actually referenced, the experience and knowledge of several OEM’s contributed to the development of this document. Each engine Manufacturer has their own practices relating to correlation and they will be used by those OEMs for the purpose of establishing certified test facilities.
Standard

Turbofan and Turbojet Gas Turbine Engine Test Cell Correlation

2016-08-12
HISTORICAL
ARP741C
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turbofan and turbojet engines. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. When baseline testing is performed in an indoor test cell, the baseline performance data are adjusted to open air conditions. Although no original equipment manufacturer (OEM) documents are actually referenced, the experience and knowledge of several OEMs contributed to the development of this document. Each engine Manufacturer has their own practices relating to correlation and they will be used by those OEMS for the purpose of establishing certified test facilities.
Standard

Turbofan and Turbojet Gas Turbine Engine Test Cell Correlation

1999-05-01
HISTORICAL
ARP741A
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turbofan and turbojet engines. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. When baseline testing is performed in an indoor test cell, the baseline performance data are adjusted to open air conditions.
Standard

Turbofan and Turbojet Gas Turbine Engine Test Cell Correlation

2008-11-05
HISTORICAL
ARP741B
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turbofan and turbojet engines. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. When baseline testing is performed in an indoor test cell, the baseline performance data are adjusted to open air conditions.
Technical Paper

Thermal Test Verification of Emission Control through Directional Baffles for the James Webb Space Telescope

2009-07-12
2009-01-2389
The thermal performance of NASA's planned James Webb Space Telescope is highly reliant on a collection of directional baffles that are part of the Integrated Science Instrument Module Electronics Compartment. In order to verify the performance of the baffle concept, two test assemblies were recently fabricated and tested at the Goddard Space Flight Center. The centerpiece of the testing was a fixture that used bolometers to measure the emission field through the baffles while the radiator panels and baffles ran a flight-like temperature. Although not all test goals were able to be met due to facility malfunctions, the test was able to prove the design viability enough to gain approval to begin manufacturing the flight article.
Technical Paper

The Smoke Eater, A Sorbent/Catalyst for Recovery from Fires

2008-06-29
2008-01-2098
The possibility and consequences of a fire on board a spacecraft and the subsequent effects of the resultant toxic gases and smoke on the crew, equipment and mission is an ever-present hazard for the National Aeronautics and Space Administration (NASA). The necessity to remove these contaminants in the presence of high levels of humidity and carbon dioxide has prompted the development of a new prototype atmospheric filter (smoke eater) that can scrub acid gases, basic gases, and carbon monoxide from a spacecraft atmosphere in a post-fire event to a concentration below one half the Spacecraft Maximum Allowable Concentration (SMAC) levels. TDA Research, Inc. (TDA) is developing an advanced smoke eater to remove combustion byproducts. The material makeup of the smoke eater will also be applicable to spacecraft evacuation masks and the shipboard atmospheric revitalization system.
Journal Article

The NH3 Inhibition Effect in the Standard SCR Reaction over a Commercial Fe-zeolite Catalyst for Diesel Exhaust Aftertreatment: An Experimental and Modeling Study

2011-04-12
2011-01-1319
Transient and steady-state kinetic data are herein presented to analyze the inhibiting effect of ammonia on the NH₃-SCR of NO at low temperatures over a Fe-zeolite commercial catalyst for vehicles. It is shown that in SCR converter models a rate expression accounting for NH₃ inhibition of the Standard SCR reaction is needed in order to predict the specific dynamics observed both in lab-scale and in engine test bench runs upon switching on and off the ammonia feed. Two redox, dual site kinetic models are developed which ascribe such inhibition to the spill-over of ammonia from its adsorption sites, associated with the zeolite, to the redox sites, associated with the Fe promoter. Better agreement both with lab-scale intrinsic kinetic runs and with engine test-bench data, particularly during transients associated with dosing of ammonia to the SCR catalyst, is obtained assuming slow migration of NH₃ between the two sites.
Technical Paper

The Influence Of Vehicle Parameters On Catalyst Space Velocity And Size Requirements

1974-02-01
740247
An empirical relationship has been developed which permits the sizing of catalytic converters for control of vehicle exhaust emissions when the converter operates under mass transfer limited conditions. The relationship is based upon the inertia weight only, and may be utilized-within certain limitations- to determine the size of catalyst required for a given vehicle when another vehicle, which is equipped with a catalyst of proven durability, is used as a reference.
Technical Paper

The Impact of Emission Standards on the Design of Aircraft Gas Turbine Engine Combustors

1976-02-01
760909
The advent of environmental standards for controlling aircraft gas turbine engine emissions has led to a reevaluation of combustor design techniques. Effective emission control techniques have been identified and a wide spectrum of potential applications for these techniques to existing and advanced engines are being considered. Results from advanced combustor concept evaluations and from fundamental experiments are presented and discussed and comparisons are made with existing EPA emission standards and recommended levels for high altitude cruise. The impact that the advanced low emission concepts may impose on future aircraft engine combustor designs and related engine components is discussed.
X