Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Robust Stabilized Control for Electric Vertical Take-Off and Landing (eVTOL) Fixed-Wing Aircraft

2023-12-31
2023-01-7104
Electric vertical takeoff and landing (eVTOL) aircraft, which is used extensively in both military and civilian fields, has the advantages of good maneuverability, high cruising speed, and low requirements for the takeoff and landing modes. Robust and stable control is crucial to ensuring its safety because the dynamics model of an eVTOL aircraft will change significantly between fixed-wing and vertical takeoff and landing mode. In this paper, we first study the structural characteristics of the eVTOL aircraft and establish its dynamic model by considering typical flight modes and mechanical parameters. Then we design a closed-loop controller based on cascade PID technique. Finally, the effectiveness of the control algorithms is verified based on the semi-physical flight simulation platform, which can lower the development cost of control algorithms significantly.
Technical Paper

Machine Learning Based Flight State Prediction for Improving UAV Resistance to Uncertainty

2023-12-31
2023-01-7114
Unmanned Aerial Vehicles (UAVs) encounter various uncertainties, including unfamiliar environments, signal delays, limited control precision, and other disturbances during task execution. Such factors can significantly compromise flight safety in complex scenarios. In this paper, to enhance the safety of UAVs amidst these uncertainties, a control accuracy prediction model based on ensemble learning abnormal state detection is designed. By analyzing the historical state data, the trained model can be used to judge the current state and obtain the command tracking control accuracy of the UAV at that instant. Ensemble learning offers superior classification capabilities compared to weak learners, particularly for anomaly detection in flight data. The learning efficacy of support vector machine, random forest classifier is compared and achieving a peak accuracy of 95% for the prediction results using random forest combined with adaboost model .
Technical Paper

Attitude Stability Control and Visualization Simulation for Vertical Take-Off and Landing (VTOL) Fixed-Wing Aircraft

2023-12-31
2023-01-7102
Direct debugging of a vertical takeoff and landing (VTOL) fixed-wing aircraft’s control system can easily result in risk and personnel damage. It is effectively to employ simulation and numerical methods to validate control performance. In this paper, the attitude stabilization controller for VTOL fixed-wing aircraft is designed, and the controller performance is verified by MATLAB and visual simulation software, which significantly increases designed efficiency and safety of the controller. In detail, we first develop the VTOL fixed-wing aircraft’s six degrees of freedom kinematics and dynamics models using Simulink module, and the cascade PID control technique is applied to the VTOL aircraft’s attitude stabilization control. Then the visual simulation program records the flight data and displays the flight course and condition, which can validate the designed controller performance effectively.
X