Refine Your Search

Topic

Search Results

Standard

Synthetic Jet Fuels from Non-Petroleum Feed Stocks

2023-02-20
CURRENT
AIR6148
This SAE Aerospace Information Report (AIR) provides general information on the developing subject of synthetic jet fuels derived from non-petroleum feed stocks. It addresses synthetic jet fuel properties and other topics associated with their use and is intended as a guide to assist aviation fuel system designers in considering important information on fuel properties when designing aircraft fuel systems and components. The AIR is limited to “drop-in” fuels that meet the requirements of the respective fuel specifications and are compatible with typical aircraft and ground refueling systems. While some key properties are included in this AIR for discussion, the reader should utilize documents such as MIL-HDBK-510 or the ASTM International research reports for a more-detailed review of fuel properties. AIR7484 also gives more details on fuel properties, specifically as they relate to airframe fuel system design.
Standard

Self-Sealing Breakaway Valves for Crash-Resistant Aircraft Fuel Systems

2020-03-19
CURRENT
AIR1616B
MIL-STD-1290, 14 CFR 27.952, and 14 CFR 29.952 provide crash resistant fuel system design and test criteria that significantly minimize fuel leaks and occurrence of post-crash fire in survivable impacts. This document does not change and does not authorize changes in or deviations from MIL-Standard or regulatory requirements. This document provides guidance for the design, performance, and test criteria for self-sealing breakaway valves.
Standard

Minimization of Electrostatic Hazards in Aircraft Fuel Systems

2013-08-09
HISTORICAL
AIR1662A
This SAE Aerospace Information Report (AIR) provides background information, technical data and related technical references for minimization of electrostatic hazards in aircraft fuel systems. Techniques used to minimize the electrostatic hazard include: a Reducing fueling rate into tank bays including use of multiple refueling inlet nozzles. b Reducing refuel plumbing flow velocities. c Introducing fuel into the tank at a low velocity near the bottom and directing it to impinge upon a grounded conducting surface. d Avoiding electrically isolated conductors in the fuel tank. e Using conductivity additives in the fuel.
Standard

METHOD - PRESSURE DROP TESTS FOR FUEL SYSTEM COMPONENTS

1994-09-01
HISTORICAL
ARP868B
To describe useful methods for conducting pressure drop tests of fuel system components for MIL-F-8615 or similar requirements and to present general suggestions for improving accuracy of test results.
Standard

METHOD - PRESSURE DROP TESTS FOR FUEL SYSTEM COMPONENTS

1983-06-01
HISTORICAL
ARP868A
To describe useful methods for conducting pressure drop tests of fuel system components for MIL-F-8615 or similar requirements; and to present general suggestions for improving accuracy of test results.
Standard

Guidance on the Impact of Fuel Properties on Fuel System Design and Operation

2018-02-24
CURRENT
AIR7484
This document describes a number of jet fuel properties and where applicable gives the specification limits for Jet A and Jet A-1, though the properties are generally applicable to all turbine fuels. Later versions of this document will give more details on specification limits for other similar fuels, such as TS-1, where they differ from Jet A and Jet-A1. It gives details about the possible impact on airframe fuel system design.
Standard

GLOSSARY OF TERMS - AIRCRAFT GROUND REFUELING

2007-12-04
HISTORICAL
AIR4783
This SAE Aerospace Information Report (AIR) presents a glossary of terns commonly utilized in the ground delivery of fuel to an aircraft and some terms relating to the aircraft being refueled.
X