Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

“Derivation of Conduction Heat Transfer in Thin Shell Toroids”

2000-07-10
2000-01-2487
This paper presents the derivation of the equations for circumferential, longitudinal and radial heat transfer conductance for a thin shell toroid or a segment of the toroid. A thin shell toroid is one in which the radius to thickness ratio is greater than 10. The equations for the surface area of a toroid or of a toroidal segment will also be derived along with the equation to determine the location of the centroid. The surface area is needed to determine the radial conductance in the toroid or toroidal segment and the centroid is needed to determine the heat transfer center of the toroid or toroidal segment for circumferential and longitudinal conductance. These equations can be used to obtain more accurate results for conductive heat transfer in toroid which is a curved spacecraft components. A comparison will be made (1) using the equations derived in this paper which takes into account the curvature of the toroid (true geometry) and (2) using flat plates to simulate the toroid.
Technical Paper

Derivation of Conduction Heat Transfer in Thin Shell Parabolas

1999-07-12
1999-01-2158
This paper presents the derivation of the equations for circumferential, longitudinal and radial heat transfer conductance for a right circular thin shell parabola or a segment of the parabola. A thin shell parabola is one in which the radius to thickness ratio is greater than 10. The equations for the surface area of a parabola or of a parabolic segment will also be derived along with the equation to determine the location of the Centroid. The surface area is needed to determine the radial conductance in the parabola or parabolic segment and the Centroid is needed to determine the heat transfer center of the parabola or parabolic segment for circumferential and longitudinal conductance. These equations can be used to obtain more accurate results for conductive heat transfer in parabola which is a curved spacecraft components.
X