Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

Welding, Resistance: Spot and Seam

2007-11-21
CURRENT
AMSW6858B
This specification covers requirements for resistance spot and seam welding of the following metals and their alloys. Group 1 - Aluminum and magnesium Group 2 - Iron, nickel, and cobalt Group 3 - Titanium
Standard

Welding, Resistance: Spot and Seam

2005-10-11
HISTORICAL
AMSW6858A
This specification covers requirements for resistance spot and seam welding of the following metals and their alloys. Group 1 - Aluminum and magnesium Group 2 - Iron, nickel, and cobalt Group 3 - Titanium
Standard

Welding, Resistance: Spot and Seam

1999-07-01
HISTORICAL
AMSW6858
This specification covers requirements for resistance spot and seam welding of the following metals and their alloys. Group 1 - Aluminum and magnesium Group 2 - Iron, nickel, and cobalt Group 3 - Titanium
Technical Paper

Welding and Joining of Magnesium

2001-10-01
2001-01-3443
The use of magnesium in a wide range of structures is expected to increase, together with the need to join it to other materials. Laser welding may be used for magnesium-magnesium joints, but other techniques will be needed for joining magnesium alloys to other materials, notably aluminium. It is shown that, for seam joints, friction stir welding is a contender, while self-piercing rivets and clinching are promising techniques for point joints. However, much further development needs to be done both to understand joint performance and to prove their industrial applicability.
Technical Paper

Weight saving in small engine and vehicle component by utilization of die cast creep resistant alloys

2009-11-03
2009-32-0010
Magnesium alloys have been used and developed in applications for various motorcycle components and others such as cylinder head cover, crankcase and oil pan due to light weight, high specific strength and recycles ability. However, many of those alloys suffer from inferior die cast ability and high temperature properties, such as creep resistant. Ryobi limited has developed the creep resistant alloy in order to be utilized for the various motorcycle components and so forth. The properties of new die cast creep resistant alloy have been introduced. The targets for development of the properties of new alloy are the same creep resistant as aluminum die cast alloys and the same diecastability as ASTM magnesium alloys, such as AZ91D or AM60B alloys. Specific approaches of development with several types of evaluation have been performed for the purpose of fulfillment of this goal.
Technical Paper

Wear Behavior of Hard Ceramic Coatings by Aluminum Oxide– Aluminum Titanate on Magnesium Alloy

2024-02-23
2023-01-5109
Magnesium and its alloys are promising engineering materials with broad potential applications in the automotive, aerospace, and biomedical fields. These materials are prized for their lightweight properties, impressive specific strength, and biocompatibility. However, their practical use is often hindered by their low wear and corrosion resistance. Despite their excellent mechanical properties, the high strength-to-weight ratio of magnesium alloys necessitates surface protection for many applications. In this particular study, we employed the plasma spraying technique to enhance the low corrosion resistance of the AZ91D magnesium alloy. We conducted a wear analysis on nine coated samples, each with a thickness of 6mm, to assess their tribological performance. To evaluate the surface morphology and microstructure of the dual-phase treated samples, we employed scanning electron microscopy (SEM) and X-ray diffraction (XRD).
Technical Paper

Warm Forming of 3t Mg Alloy Sheet for An Automotive Electronic Compressor Case

2014-03-24
2014-01-2012
Recently, the applications of magnesium alloy to automobile and electric parts have been increased because of its high specific strength, excellent machinability, high electrical and thermal conductivity. The efforts of automobile industry to reduce fuel consumption by using lightweight structural materials have accelerated the deep drawing technology of magnesium alloy sheet. In the present study, the basic study to fabricate an automotive compressor case have been carried out. In order to apply ductile fracture criterion to predict the forming failure, critical damage values were determined from uniaxial tensile tests and FE simulations, and then they were expressed as the function of strain rate and temperature. The proposed methodology was applied to design the deep drawing process for fabrication of magnesium automotive compressor case without any defect.
Technical Paper

Vibration Analysis on Magnesium Alloy Housing and Analysis of Resonant Frequency on the Housing between Magnesium and Aluminium Alloy

2017-07-10
2017-28-1969
Magnesium alloy current being used for automotive sector and are being significantly used for manufacturing engine block as offering higher power to weight ratio to the vehicle. In this context, the magnesium alloy has been used in the replacement of aluminium alloy for the starter housing which in turn increase the power to weight ratio of the motor. Considering the operation condition of starter motor in the engine of the vehicles, the starter motor is being exposed to the harsh environment, where its system is being tested for Noise, Vibration and Harshness. In this paper, the magnesium alloy housing is used to study the vibration and noise developed in the starter motor and the same is compared with the noise and vibration of the motor when it being used with Aluminium alloy Housing. First, the vibration study is carried out for the housing part alone to capture the resonant frequency of the both housing alloy say, Aluminium and Magnesium.
X