Refine Your Search

Topic

Author

Search Results

Technical Paper

e-Fuel Production via Renewables and the Impact on the In-Use CO2 Performance

2020-09-15
2020-01-2139
The trend towards renewable energy sources will continue under the pre-amble of greenhouse gas (GHG) emission reduction targets. The main question is how to harvest and store renewable energy properly. The challenge of intermittency of the renewable energy resources make the supply less predictable compared to the traditional energy sources. Chemical energy carriers like hydrogen and synthetic fuels (e-Fuels) seem to be at least a part of the solution for storing renewable energy. The usage of e-Fuels in the existing ICE-powered vehicle fleet has a big lever arm to reduce the GHG emissions of the transport sector in the short- and medium term. The paper covers the whole well-to-wheel (WtW) pathway by discussing the e-Fuel production from renewable sources, the storage and the usage in the vehicle. It will be summarized by scenarios on the impact of e-Fuel to the WtW CO2 fleet emissions.
Journal Article

Use of a Catalytic Stripper as an Alternative to the Original PMP Measurement Protocol

2013-04-08
2013-01-1563
The Particle Measurement Programme (PMP) developed an exhaust particle number measurement protocol that has been adopted by current light duty vehicle emission regulations in Europe. This includes thermal treatment of the exhaust aerosol to isolate solid particles only and a number counting device with a lower cutpoint of 23 nm to avoid measurement of smaller particles that may affect the repeatability of the measurement. In this paper, we examine a potential alternative to the PMP system, where the thermal treatment is replaced by a catalytic stripper (CS). This offers oxidation and not just evaporation of the volatile components. Alternative sampling systems, either fulfilling the PMP recommendations or utilizing a CS, have been explored in terms of their volatile particle removal efficiency. Tests have been conducted on diesel exhaust, diesel equipped with DPF and gasoline direct injection emissions.
Technical Paper

The Impact of Emissions and Fuel Economy Requirements on Fuel Injection System and Noise of HD Diesel Engines

1998-02-01
980176
Despite the increasingly stringent emissions legislation, users and owners of commercial diesel vehicles are continually demanding that each new engine generation is more economical than the previous one. This is especially important for commercial vehicles where the majority of engines are in the 1-2ltr./cyl. class. The demands are being reflected in new engine designs with lower friction and improved structural stiffness, together with fuel systems having increased pressure capability, higher spill rates, injection rate shaping and advanced control features. These fuel system requirements have led to a variety of new fuel injection systems and in the search for increased injection pressure these fuel systems have placed greater demands on the engine, especially in areas such as the cylinder head and fuel system drive, sometimes with adverse effects on the combustion and fuel injection system induced mechanical noise.
Technical Paper

The Hybrid IC Engine – Challenges of Hydrogen and E-Fuel Compatibility within Current Production Boundaries

2023-04-11
2023-01-0397
Increasingly stringent greenhouse gas and emission limits demand for powertrain electrification throughout all vehicle applications. Beside fully electric powertrains different configurations of hybrid powertrains will have an important role in upcoming and future vehicle generations. As already discussed in previous papers, the requirements on the combustion engine in hybrid powertrains are different to those in a conventional powertrain solution, heading for brake thermal efficiency targets of 45% and above within the product lifecycle for conventional fuels. Focus on product cost and production and assembly facility investment drives reuse of technology packages within modular powertrain technology platforms, with different combinations of internal combustion engines (ICE), transmissions, and e-drive-layouts. The goal of zero carbon operation requires compatibility of ICE for sustainable fuels.
Technical Paper

The Hybrid Engine - Challenge between GHG-Legislation, Efficiency Targets, Product Cost and Production Boundaries

2022-03-29
2022-01-0593
Upcoming, increasingly stringent greenhouse gas (GHG) as well as emission limits demand for powertrain electrification throughout all vehicle applications. Increasing complexity of electrified powertrain architectures require an overall system approach combining component technology with integration and industrialization requirements when heading for further significant efficiency optimization of the subsystem internal combustion engine. The requirements on the combustion engine in hybrid powertrains are quite different to those in a conventional powertrain solution. Next-generation hybrid engines, with brake thermal efficiency (BTE) targets starting from 42-43% and aiming for 45% and above within the product lifecycle, require a re-thinking of the base engine architecture of current modular engine platforms. At the same time focus on the product cost and minimized additional investment demand reuse of current production, machining and assembly facilities as far as possible.
Technical Paper

Sound Optimization for Downsized Engines

2014-06-30
2014-01-2040
Today, the number of downsized engines with two or three cylinders is increasing due to an increase in fuel efficiency. However, downsized engines exhibit unbalanced interior sound in the range of their optimal engine speed, largely because of their dominant engine orders. In particular, the sound of two-cylinder engines yields half the perceived engine speed of an equivalent four-cylinder engine at the same engine speed. As a result when driving, the two-cylinder engine would be shifted to higher gears much later, diminishing the expected fuel savings. This contribution presents an active in-car sound generation system that makes a two-cylinder engine sound like the more familiar four-cylinder engine. This is done by active, load-dependent playback of signals extracted from the engine vibration through a shaker mounted on the firewall. A blind test with audio experts indicates a significant reduction of the engine speed when shifting to a higher gear.
Technical Paper

Single Cylinder 25kW Range Extender: Development for Lowest Vibrations and Compact Design Based on Existing Production Parts

2015-11-17
2015-32-0740
The automotive trend towards increased levels of electrification is showing a clear direction for hybrid technologies. Nowadays Mild- and plug-in-hybrids open a very wide area of future developments whereas battery electric vehicles (BEV) are still evident but still perceived as niche products with limited production volumes. Nevertheless, major OEMs are working on these kinds of vehicles and have also brought such EV concepts into series production. All of these designs show a clear trend that, beside the topic of electric traction motor and energy storage systems, the internal combustion engine (ICE) is also coming into focus again. In many of these vehicles the range extender (RE) unit is foreseen as an emergency unit to recharge the batteries if the state of charge (SOC) is too low. One of the major advantages of a BEV over other designs is the very good acoustic behavior, so the NVH performance becomes the most challenging topic for RE development.
Technical Paper

Simulation of Piston Ring Dynamics and Their Effect on Oil Consumption

2000-03-06
2000-01-0919
The sealing effect of piston rings in reciprocating engines have a major impact on blow-by and lube oil consumption (LOC). The sealing is achieved by the gas forces acting on the top and back side of the rings. In addition, the load in the radial direction is increased by the initial ring tension. Inertia forces arising from the oscillating vertical stroke and shear forces due to the secondary piston movement influence this sealing effect by a reduction in contact pressure. Numerical simulation of the piston and ring dynamics solves this non-linear problem and predicts the interaction between piston secondary motion, axial ring motion, and 2nd land pressure. This paper describes the modeling of the cylinder kit dynamics of a six-cylinder truck diesel engine for several operating conditions and ring modifications. The influence of boundary conditions and adjustment parameters on piston ring motion and gas penetration was investigated.
Technical Paper

Powertrain Calibration Techniques

2019-09-09
2019-24-0196
Meeting the particle number (PN) emissions limits in vehicle test sequences needs specific attention on each power variation event occurring in the internal combustion engine (ICE). ICE power variations arise from engine start onwards along the entire test drive. In hybrid systems, there is one further source for transient ICE response: each power shift between E-motor and ICE introduces gas flow variations with subsequent temperature response in the ICE and in the engine aftertreatment system (EAS). This bears consequences for engine out emissions as well as for the EAS efficiency and even for the durability of a catalytic converter. As system calibration engineers must decide on numerous actuator parameters, their decisions, finally, are crucial for meeting legislative limits under the boundary conditions given by the hybrid vehicle’s drive environment.
Technical Paper

Plant Modeling for Closed Loop Combustion Control - A Thermodynamic Consistent and Real-Time Capable Approach

2015-04-14
2015-01-1247
Direct injection Diesel engines are a propulsion technology that is continuously developed to meet emission standards. Great optimization potential lies in the combustion process itself. The application of closed loop combustion control allows reacting online to environmental conditions and stabilizing the combustion regarding performance and emissions. Dedicated real-time plant models help to develop and calibrate control algorithms in office and hardware in the loop environments. The present work describes a real-time capable, crank-angle resolved engine, cylinder and combustion model. The cylinder applies an 0D, two-zone approach and a phenomenological combustion model describes ignition delay, premixed and diffusive combustion. The latter is enhanced by a quasi-dimensional description of the injection spray. The model is validated with dedicated measurements. The plant model is applied in two use-cases for closed loop combustion control.
Technical Paper

Piston Clearance Optimization using Thermo-elasto Hydrodynamic Simulation to Reduce Piston Slap Excitation and Friction Loss

2012-06-13
2012-01-1530
The reduction of acoustic excitation due to piston slap as well as friction loss power and seizure are main issues when simulating the oil film lubricated piston - cylinder contacts of internal combustion engines. For a correct representation of the contact conditions between a piston skirt and a cylinder liner surface both the dynamics of the contacting flexible bodies, the shape of the contacting surfaces, the amount of available oil and the properties of the lubricant itself play important roles. Besides an appropriate representation of the hydrodynamic load carrying capacity using an averaged Reynolds equation with laminar flow conditions, the simulation has to use an appropriate asperity model to consider the mixed lubrication condition. The lubricant properties are in particular influenced by its thermal conditions.
Journal Article

Particulate Matter Classification in Filtration and Regeneration-Plant Modeling for SiL and HiL Environment

2017-03-28
2017-01-0970
The present work describes an existing transient, non-isothermal 1D+1D particulate filter model to capture the impact of different types of particulate matter (PM) on filtration and regeneration. PM classes of arbitrary characteristics (size, composition etc.) are transported and filtered following standard mechanisms. PM deposit populations of arbitrary composition and contact states are used to describe regeneration on a micro-kinetical level. The transport class and deposit population are linked by introducing a splitting deposit matrix. Filtration and regeneration modes are compared to experimental data from literature and a brief numerical assessment on the filtration model is performed. The filter model as part of an exhaust line is used in a concept study on different coating variants. The same exhaust line model is connected to an engine thermodynamic and vehicle model. This system model is run through a random drive cycle in office simulation.
Journal Article

NVH Challenges and Solutions for Vehicles with Low CO2 Emission

2012-06-13
2012-01-1532
Driven by worldwide climate change, governments are introducing more stringent emission regulations with particular focus on fuel saving for CO₂ emission reduction. Downsizing and weight reduction are two of the main drivers to achieve these demanding regulations. Both aspects however might have a strong negative effect on the overall vehicle NVH behavior. Weight reduction directly influences NVH due to reduction of absorption and damping material and due to light-weight design affecting the dynamic responses of powertrain and vehicle structures. Engine downsizing however has multiple negative effects on NVH. Beside higher vibrations and speed irregularities due to lower cylinder numbers and displacements also reduction of sound quality is a critical topic that will be handled within this publication.
Technical Paper

Modelling the Knocking Combustion of a Large Gas Engine Considering Cyclic Variations and Detailed Reaction Kinetics

2014-10-13
2014-01-2690
The combustion efficiency of large gas engines is limited by knocking combustion. Due to fact that the quality of the fuel gas has a high impact on the self-ignition of the mixture, it is the aim of this work to model the knocking combustion for fuel gases with different composition using detailed chemistry. A cycle-resolved knock simulation of the fast burning cycles was carried out in order to assume realistic temperatures and pressures in the unburned mixture Therefore, an empirical model that predicts the cyclic variations on the basis of turbulent and chemical time scales was derived from measured burn rates and implemented in a 1D simulation model. Based on the simulation of the fast burning engine cycles the self-ignition process of the unburned zone was calculated with a stochastic reactor model and correlated to measurements from the engines test bench. A good agreement of the knock onset could be achieved with this approach.
Technical Paper

MiL-Based Calibration and Validation of Diesel-ECU Models Using Emission and Fuel Consumption Prediction during Dynamic Warm-Up Tests (NEDC)

2012-04-16
2012-01-0432
A calibration and validation workflow will be presented in this paper, which utilizes common static global models for fuel consumption, NOx and soot. Due to the applicability for warm-up tests, e. g. New European Driving Cycle (NEDC), the models need to predict the temperature influence and will be fitted with measuring data from a conditioned engine test bed. The applied model structure - consisting of a number of global data-based sub-models - is configured especially for the requirements of multi-injection strategies of common rail systems. Additionally common global models for several constant coolant water temperature levels are generated and the workflow tool supports the combination and segmentation of global nominal map with temperature correction maps for seamless and direct ECU setting.
Journal Article

Measures to Reduce Particulate Emissions from Gasoline DI engines

2011-04-12
2011-01-1219
Particulate emission reduction has long been a challenge for diesel engines as the diesel diffusion combustion process can generate high levels of soot which is one of the main constituents of particulate matter. Gasoline engines use a pre-mixed combustion process which produces negligible levels of soot, so particulate emissions have not been an issue for gasoline engines, particularly with modern port fuel injected (PFI) engines which provide excellent mixture quality. Future European and US emissions standards will include more stringent particulate limits for gasoline engines to protect against increases in airborne particulate levels due to the more widespread use of gasoline direct injection (GDI). While GDI engines are typically more efficient than PFI engines, they emit higher particulate levels, but still meet the current particulate standards.
Technical Paper

Investigations on the Sound Quality of Engines with Low Cylinder Numbers

2014-06-30
2014-01-2041
Due to future directives of the European Union regarding fuel consumption and CO2 emissions the automotive industry is forced to develop new and unconventional technologies. These include for example stop-start-systems, cylinder deactivation or even reduction of the number of cylinders which however lead to unusual acoustical perceptions and customer complaints. Therefore, it is necessary to evaluate the sound character of engines with low numbers of cylinders (2 and 3 cylinders) and also the differences to the character of the more common 4-cylinder engines. Psychoacoustic parameters are used to describe and understand the differences. Based on the gained knowledge possible potentials for improvement can be derived in the future. The used data base consists of artificial head recordings of car interior noise according to defined driving conditions measured on the AVL test track. Naturally, there are more recordings available for 4-cylinder engines than for 2- and 3-cylinder engines.
Technical Paper

Influence of Different Oil Properties on Low-Speed Pre-Ignition in Turbocharged Direct Injection Spark Ignition Engines

2016-04-05
2016-01-0718
In recent years concern has arisen over a new combustion anomaly, which was not commonly associated with naturally aspirated engines. This phenomenon referred to as Low-Speed Pre-Ignition (LSPI), which often leads to potentially damaging peak cylinder pressures, is the most important factor limiting further downsizing and the potential CO2 benefits that it could bring. Previous studies have identified several potential triggers for pre-ignition where engine oil seems to have an important influence. Many studies [1], [2] have reported that detached oil droplets from the piston crevice volume lead to auto-ignition prior to spark ignition. Furthermore, wall wetting and subsequently oil dilution [3] and changes in the oil properties by impinging fuel on the cylinder wall seem to have a significant influence in terms of accumulation and detachment of oil-fuel droplets in the combustion chamber.
Journal Article

Immersion Quenching Simulation of Realistic Cylinder Head Geometry

2014-04-01
2014-01-0641
In this paper, a recently improved Computational Fluid Dynamics (CFD) methodology for virtual prototyping of the heat treatment of cast aluminum parts, above most of cylinder heads of internal combustion engines (ICE), is presented. The comparison between measurement data and numerical results has been carried out to simulate the real time immersion quenching cooling process of realistic cylinder head structure using the commercial CFD code AVL FIRE®. The Eulerian multi-fluid modeling approach is used to handle the boiling flow and the heat transfer between the heated structure and the sub-cooled liquid. While for the fluid region governing equations are solved for each phase separately, only the energy equation is solved in the solid region. Heat transfer coefficients depend on the boiling regimes which are separated by the Leidenfrost temperature.
Technical Paper

Fatigue Strength Effect of Thread Forming Process in Cast Aluminum

2006-04-03
2006-01-0780
Two thread forming processes, rolling and cutting, were studied for their effects on fatigue in cast aluminum 319-T7. Material was excised from cylinder blocks and tested in rotating-bending fatigue in the form of unnotched and notched specimens. The notched specimens were prepared by either rolling or cutting to replicate threads in production-intent parts. Cut threads exhibited conventional notch behavior for notch sensitive materials. In contrast, plastic deformation induced by rolling created residual compressive stresses in the notch root and significantly improved fatigue strength to the point that most of the rolled specimens broke outside the notch. Fractographic and metallographic investigation showed that cracks at the root of rolled notches were deflected upon initiation. This lengthened their incubation period, which effectively increased fatigue resistance.
X