Refine Your Search

Topic

Author

Search Results

Technical Paper

Variable Effort Steering for Vehicle Stability Enhancement Using an Electric Power Steering System

2000-03-06
2000-01-0817
This paper investigates a method for improving vehicle stability by incorporating feedback from a yaw rate sensor into an electric power steering system. Presently, vehicle stability enhancement techniques are an extension of antilock braking systems in aiding the driver during vehicle maneuvers. One of the contributors to loss of vehicle control is the reduction in tactile feedback from the steering handwheel when driving on wet or icy pavement. This paper presents research indicating that the use yaw rate feedback improves vehicle stability by increasing the amount of tactile feedback when driving under adverse road conditions.
Technical Paper

Use of Fuzzy Logic in Wheel Slip Assignment - Part II: Yaw Rate Control with Sideslip Angle Limitation

2002-03-04
2002-01-1220
This paper is an extension to the work presented in part I [1]. The control objective is still the same - use a logic based control design technique to assign a wheel slip, λ, to each corner of a vehicle, to track overall desired vehicle dynamics. As in part I, a fuzzy logic based controller is the primary control, with additional logic to select the inside/outside classifiers for the wheels. In part I, only the reduction of yaw rate error, e, was considered. It was shown that, although the overall system had satisfactory performance, there was slight deteriorization in the tracking performance when trying to compensate through a significant vehicle sideslip angle, β. In this paper, additional logic is introduced into the control to limit the vehicle sideslip angle, β; thus, allowing for a more robust desired yaw rate, Ωd, tracking control performance. The emergency lane change maneuver is simulated to show the effectiveness of the redesigned control.
Technical Paper

US and UK Field Rollover Characteristics

2001-03-05
2001-01-0167
In this study, US and UK accident data were analyzed to identify parameters that may influence rollover propensity to analyze driver injury rate. The US data was obtained from the weighted National Automotive Sampling System (NASS-CDS), calendar years 1992 to 1996. The UK pre-roll data was obtained from the national STATS 19 database for 1996, while the injury information was collected from the Co-operative Crash Injury Study (CCIS) database. In the US and UK databases, rollovers accounted for about 10% of all crashes with known crash directions. In the US and UK databases, most rollovers occurred when the vehicle was either going straight ahead or turning. The propensity for a rollover was more than 3 times higher when going around a bend than a non-rollover. In the UK, 74% of rollovers occurred on clear days with no high winds and 14% on rainy days with no high winds. In the US, 83% of rollovers took place in non-adverse weather conditions and 10% with rain.
Technical Paper

US and UK Belted Driver Injuries with and without Airbag Deployments - A Field Data Analysis

1999-03-01
1999-01-0633
This study compares the effect of US and European airbag deployments on injury outcomes for belted drivers in frontal crashes. Driver weight, height and seat track position was also examined in relation to those outcomes. This information may help to prioritize and guide the logic for “Smart” airbags. For the study, only airbag-equipped cars were considered. Two accident databases were used: 1) the weighted and unweighted National Accident Sampling System (NASS-CDS) from the US, calendar years 1995 to 1996, and 2) the unweighted Co-operative Crash Injury Study (CCIS) from the UK, calendar years 1992 to 1998. The parameters investigated were Injury Severity Score (ISS), Equivalent Test Speed (ETS), occupant weight, occupant height and seat location. For US drivers, the injury rate and occurrence were calculated using weighted data, while for UK drivers, the rate and occurrence were obtained using unweighted data.
Technical Paper

Thermal Comfort Prediction and Validation in a Realistic Vehicle Thermal Environment

2012-04-16
2012-01-0645
The focus of this study is to validate the predictive capability of a recently developed physiology based thermal comfort modeling tool in a realistic thermal environment of a vehicle passenger compartment. Human subject test data for thermal sensation and comfort was obtained in a climatic wind tunnel for a cross-over vehicle in a relatively warm thermal environment including solar load. A CFD/thermal model that simulates the vehicle operating conditions in the tunnel, is used to provide the necessary inputs required by the stand-alone thermal comfort tool. Comparison of the local and the overall thermal sensation and comfort levels between the human subject test and the tool's predictions shows a reasonably good agreement. The next step is to use this modeling technique in designing and developing energy-efficient HVAC systems without compromising thermal comfort of the vehicle occupants.
Technical Paper

The Effectiveness of Adjustable Pedals Usage

2000-03-06
2000-01-0172
This study evaluates the comfort benefits of adjustable pedals by determining their effect on the distance between the occupant and steering wheel, occupant posture and foot kinematics. For the study, 20 volunteers were tested in a small and large vehicle equipped with adjustable pedals. Twenty volunteers were tested in a small and large vehicle at 3 pedal positions: normal, comfortable and maximum tolerable. In the small car, the decrease in ankle-to-steering wheel distance between the normal and comfortable position was higher in the short-statured group than the medium group. The mean change in chest-to-steering wheel distance was about 50 mm in the medium and in the order of 40 mm in the short group. The seatback angle increased by 2° in the medium group and decreased by 3° in the short group. In the large car, the decrease in ankle-to-steering wheel distance between comfortable and the normal position was about 70 mm in the short-statured and medium group.
Technical Paper

Suppression Technologies for Advanced Air Bags

2000-11-01
2000-01-C037
In May 2000 the National Highway Traffic Safety Administration (NHTSA) issued the final rule for the Advanced Air Bag regulations effective MY 2004 for vehicles to be sold in the United States. These regulations are in response to the air bag-induced injuries seen in the field, especially to children and short women. Advanced air bags require a vehicle manufacturer to design air bags for a broad array of occupants: 12-month-old, 3-year-old and 6-year-old children, and 5th percentile adult females, as well as 50th percentile adult males with new and more stringent injury criteria. Requirements for minimizing air bag risks include automatically turning off the air bag in the presence of young children or deploying the air bag in a manner much less likely to cause serious or fatal injury to out-of-position occupants. Technologies that disable the air bag in the presence of young children or adults in out-of-position are termed as "suppression technologies.'
Technical Paper

Sensory Evaluation of Commercial Truck Interiors

1999-03-01
1999-01-1267
Vehicle interior harmony is related to human factors but it deals with human emotional attachment to the product. Kansei, or sensory engineering provides an effective approach to address harmony issues. This paper reports a preliminary investigation of human sensory evaluation of commercial truck interiors, especially the door interiors. To investigate the end users' needs and preference, a questionnaire survey was administered to twenty-six commercial truck drivers. Responses on usability, styling, harmony, and ergonomics issues of each driver's own truck were recorded. Furthermore, a set of 12 semantic differential scales, together with a preference ranking scale, was served to evaluate six truck door interiors. Results show that commercial truck drivers are more concerned with functionality and usability than styling and visual harmony.
Technical Paper

Rheocasting of Semi-Solid A357 Aluminum

2000-03-06
2000-01-0059
The most popular aluminum alloys for semi-solid automotive components are A356 and A357. The density of rheocast semi-solid A357 is higher than die cast A357 and allows for both T5 and T6 heat treatment. The mechanical properties of rheocast semi-solid A357 was found to be more dependent upon the heat treat schedule and casting soundness than by the solid content of the semi-solid slurry or the globule shape.
Technical Paper

Rapid Algorithm Development Tools Applied to Engine Management Systems

1998-02-23
980799
Intense competition in the automotive industry requires continuous reduction in innovation cycle time, even as corporations are downsizing and system complexity is increasing. Subsequently, the application of recently introduced Rapid Algorithm Development (RAD) tools has facilitated significant advances in the development of embedded control systems. The RAD steps include system modeling, control algorithm design, simulation analysis, automated calibration design, and vehicle implementation through automatic code generation. The application of RAD tools and the associated benefits are described, specifically in the context of Engine Management Systems (EMS). Such benefits include significant reductions in development cycle time, open architecture, automated calibration, and information reuse.
Technical Paper

Performance Evaluation of Door & Seat Side-Impact Airbags for Passenger Van and Sport-Utility Vehicles

1998-02-23
980912
Side impact accounts for a significant source of societal harm, injury and death. To address this issue, Europe and US have introduced legislation to be met for the new vehicle certification. In an effort to meet these regulations and the market demand for safety, Automotive manufacturers have significantly improved vehicle side structure integrity and introduced side impact airbags are for added protection. Today, passenger vans, light truck and sport-utility type vehicles are all popular consumer choices in the US. These vehicles differ significantly from passenger cars in many respects and as such need special design considerations for side airbags. Here, MADYMO-3D model of a generic passenger van / Sport-Utility type vehicle is created and correlated to FMVSS-214 side impact crash test. This model is used to evaluate both door and seat mounted side airbag designs in different orientations at standard test impact condition and at a higher speed.
Technical Paper

Open-Interface Definitions for Automotive Systems1 Application to a Brake by Wire System

2002-03-04
2002-01-0267
Today automotive system suppliers develop more-or-less independent systems, such as brake, power steering and suspension systems. In the future, car manufacturers like Volvo will build up vehicle control systems combining their own algorithms with algorithms provided by automotive system suppliers. Standardization of interfaces to actuators, sensors and functions is an important enabler for this vision and will have major consequences for functionality, prices and lead times, and thus affects both vehicle manufacturers and automotive suppliers. The investigation of the level of appropriate interfaces, as part of the European BRAKE project, is described here. Potential problems and consequences are discussed from both a technical and a business perspective. This paper provides a background on BRAKE and on the functional decomposition upon which the interface definitions are based. Finally, the interface definitions for brake system functionality are given.
Technical Paper

Non-Linear Analysis of Vehicle Dynamics (NAVDyn): A Reduced Order Model for Vehicle Handling Analysis

2000-05-01
2000-01-1621
Many vehicle-dynamics models exist to study the motion of a vehicle. Most of these models fall into one of two categories: very simple models for basic analyses and high-order models consisting of many degrees-of-freedom. For many scenarios, the simple models are not adequate. At the same time, for many vehicle handling and braking studies, the high-order models are more complex than necessary. This paper presents a model that includes the dynamics that are relevant to studying vehicle handling and braking, but is still simple enough to run in near real-time. The model was implemented in such a way that it is easily customized for a particular study. Predictions from this simplified model were compared against a high-order model and against actual vehicle test data. The simulations indicate a close agreement in the results.
Technical Paper

Near and Far-Side Adult Front Passenger Kinematics in a Vehicle Rollover

2001-03-05
2001-01-0176
In this study, U.S. accident data was analyzed to determine interior contacts and injuries for front-seated occupants in rollovers. The injury distribution for belted and unbelted, non-ejected drivers and right front passengers (RFP) was assessed for single-event accidents where the leading side of the vehicle rollover was either on the driver or passenger door. Drivers in a roll-left and RFP in roll-right rollovers were defined as near-side occupants, while drivers in roll-right and RFP in roll-left rollovers were defined as far-side occupants. Serious injuries (AIS 3+) were most common to the head and thorax for both the near and far-side occupants. However, serious spinal injuries were more frequent for the far-side occupants, where the source was most often coded as roof, windshield and interior.
Technical Paper

Individual Cylinder Fuel Control with a Switching Oxygen Sensor

1999-03-01
1999-01-0546
In this paper we discuss in detail an algorithm that addresses cylinder-to-cylinder imbalance issues. Maintaining even equivalence-ratio (ϕ) control across all the cylinders of an engine is confounded by imbalances which include fuel-injector flow variations, fresh-air intake maldistribution and uneven distribution of Exhaust Gas Re-circulation (EGR). Moreover, in markets that are growing increasingly cost conscious, with ever tightening emissions regulations, correcting for such mismatches must not only be done, but done at little or no additional cost. To address this challenge, we developed an Individual Cylinder Fuel Control (ICFC) algorithm that estimates each cylinder's individual ϕ and then compensates to correct for any imbalance using only existing production hardware. Prior work in this area exists1,2, yet all disclosed production-intent work was performed using wide-range oxygen sensors, representing cost increases.
Technical Paper

Estimation of Vehicle Side Slip Angle and Yaw Rate

2000-03-06
2000-01-0696
An algorithm for estimation of vehicle yaw rate and side slip angle using steering wheel angle, wheel speed, and lateral acceleration sensors is proposed. It is intended for application in vehicle stability enhancement systems, which use controlled brakes or steering. The algorithm first generates two initial estimates of yaw rate from wheel speeds and from lateral acceleration. A new estimate is subsequently calculated as a weighted average of the two initial ones, with the weights proportional to confidence levels in each estimate. This preliminary estimate is fed into a closed loop nonlinear observer, which generates the final estimate of yaw rate along with estimates of lateral velocity and side slip angle. Parameters of the observer depend on the estimated surface coefficient of adhesion, thus providing adaptation to changes in road surface coefficient of adhesion.
Technical Paper

Environmentally Conscious Manufacturing of TPO Instrument Panel Skins

2000-03-06
2000-01-0023
Thermoplastic polyolefin (TPO) instrument panel skins are in demand in Europe and Asia as a solution to final product disposition environmental concerns. In North America TPO is valued for its durability characteristics (particularly heat and UV aging) and capability for deployment of seamless airbags at cold temperatures. Desiring to have an environmentally “green” system to create the “green” product, Delphi designed a manufacturing process with in-plant closed loop recycling of 100% offal directly back into the skin and the use of waterbased coating system for combating concerns with solvents. Delphi's development of recyclable TPO skin for instrument panels was introduced on 1997 production of Mercedes-Benz M-class. The paper will describe how the systems approach was used in overcoming the challenges involved in closed loop recycling of engineered offal during sheet manufacturing and thermoforming processes and the implementation of waterbased primer and topcoat systems.
Technical Paper

Enhanced Vehicle Stability with Engine Drag Control

2002-03-04
2002-01-1217
This paper describes the development and implementation of an Engine Drag Control algorithm to improve vehicle stability performance. Engine drag can occur on low and high coefficient surfaces when the driver suddenly releases the throttle. If the engine drag force becomes larger than the frictional force between the tire and the road, the tires will break loose from the surface and slip. This could induce vehicle instability especially with rear drive vehicles on low-coefficient surfaces. The EDC algorithm has been developed to provide accurate control of the wheels. EDC will help reduce the yaw rate of the vehicle and thus achieve greater vehicle stability. The paper also presents methods used to test the robustness of such a system. The purpose of the testing was to ensure that there would be no false activations of EDC under normal driving conditions and also to ensure that, when the system is active, it is mostly transparent to the driver.
Technical Paper

Energy Efficiency Impact of Localized Cooling/Heating for Electric Vehicle

2015-04-14
2015-01-0352
The present paper reports on a study of the HVAC energy usage for an EREV (extended range electric vehicle) implementation of a localized cooling/heating system. Components in the localized system use thermoelectric (TE) devices to target the occupant's chest, face, lap and foot areas. A novel contact TE seat was integrated into the system. Human subject comfort rides and a thermal manikin in the tunnel were used to establish equivalent comfort for the baseline and localized system. The tunnel test results indicate that, with the localized system, HVAC energy savings of 37% are achieved for cooling conditions (ambient conditions greater than 10 °C) and 38% for heating conditions (ambient conditions less than 10 °C), respectively based on an annualized ambient and vehicle occupancy weighted method. The driving range extension for an electric vehicle was also estimated based on the HVAC energy saving.
Technical Paper

Driver Injuries in US Single-Event Rollovers

2000-03-06
2000-01-0633
The purpose of this paper is to investigate occupant injuries which may be sustained during a single-event crash with known roll mechanism. The data was obtained from the weighted National Automotive Sampling System/ Crashworthiness Data System (NASS-CDS) for calendar years 1992 to 1996. The effect of number of rollover turns, roll direction, ejection and belt usage on driver injury responses was analyzed in single-event trip-overs. Trip-overs were chosen for the analysis because they account for over 50% of rollover crashes. The number of rollovers was divided in 3 categories: ¼ to ½ turn, ¾ to 1 turn and above 1 turn. Roll direction was either roll-left or a rollright along the longitudinal axis of the vehicle. Roll-left represents a roll with the driver side leading, while a roll right is with the right front passenger side leading. In the database used in this study, there were three times more belted drivers than unbelted.
X