Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Ventilation Characteristics of Modeled Compact Car Part 6 - Numerical Analysis of Heat Transfer Characteristics by CRI

2012-04-16
2012-01-0640
In the present study, numerical simulation coupling convection and radiation in vehicle was done to analyze the formation of the temperature field under the non-uniform thermal condition. The scaled cabin model of simplified compact car was used and the thermal condition was determined. The fore floor, the top side of the inst. panel, the front window and the ceiling were heat source. The lateral side walls were cooled by the outdoor air and the other surfaces were adiabatic. It is same with the experimental condition presented in Part 5. In order to analyze the individual influence of each heat source, Contribution Ratio of Indoor climate (CRI) index was used. CRI is defined as the ratio of the temperature rise at a point from one individual heat source to the temperature rise under the perfect mixing conditions for the same heat source.
Technical Paper

Ventilation Characteristics of Modeled Compact Car Part 5 - Scaled Model Experiment for Heat Transfer Characteristics

2012-04-16
2012-01-0634
Accuracy of numerical simulation has to be evaluated through the actual phenomenon such as experiment or measurement and then it can be employed to design the air-conditioning system of car cabin at the development phase. Scaled model of vehicle cabin was created by the Society of Automotive Engineers of Japan (JSAE) and the experiment was performed to obtain the detailed information of heat transfer characteristics inside the cabin under the non-isothermal condition. The sheet heaters were put to the inner surface of the acrylic cabin and they supplied certain amount of heat. The temperatures of inner and outer surface and air were measured to evaluate the thermal environment of the cabin. The results lead to enhancement of the data of the standard model of the cabin.
Technical Paper

Trend of Bolts for Use in Automobiles and Development of Class 10.9 Low Carbon Boron Steel Bolt

1997-02-24
970516
There are strong demands for reduced production costs of ordinary bolts, of which a large number are used throughout automobiles. In addition, there are continued demands for higher performance and lower weight in automobiles. For this reason, there is an increasing trend to develop steel for high strength bolts or to adopt the plastic region tightening method. At present, the principal materials used in high strength bolts of class 10.9 are medium carbon alloy steel. When a low carbon boron steel bolt is used as a class 10.9 bolt under high stress, delayed fracture may occur, so that these cannot always be used for the body and chassis applications. The authors have developed a new low carbon boron steel with increased delayed fracture strength on the same order as that of JIS-SCM435 (equivalent to SAE4135) medium carbon alloy steel. Attention was focused principally on decreasing the amounts of phosphorus and sulfur in the steel.
Technical Paper

The Validity of EPS Control System Development using HILS

2010-04-12
2010-01-0008
In recent years, the increased use of electric power steering in vehicles has increased the importance of issues such as making systems more compact and lightweight, and dealing with increased development man-hours. To increase development efficiency, the use of a “Hardware in the loop simulator” (HILS) is being tested to shift from the previous development method that relied on a driver's subjective evaluation in an actual vehicle test to bench-test development. Using HILS enables tasks such as specification studies, performance forecasts, issue identification and countermeasure proposals to be performed at an early stage of development even when there is no prototype vehicle. This report describes a case study of using HILS to solve the issues of reducing the load by adjusting the geometric specifications around the kingpin and eliminating the tradeoff by adding a new EPS control algorithm in order to make the electric power steering (EPS) more compact and lightweight.
Technical Paper

The Structure of an Advanced Independent Rear Toe-Control System

2015-04-14
2015-01-1499
Honda announced an independent right and left rear toe control system (first generation) in 2013 and presented it as the world's first. As stated in a previous paper, “Independent Left and Right Rear Toe Control System,” with this system Honda has achieved a balance between an enjoyable driving experience in which handling is performed at the driver's will (“INOMAMA” handling) and stable driving performance.(1) This first generation is optimally designed to the vehicle specifications such as suspension axial force and steering gear ratio of the vehicle to which the system is applied. For more widespread application of independent rear toe control technology, a next generation system (second generation) has been developed, which achieves both cost reduction and flexible system performance which can be adapted to a variety of vehicles. The system development began by setting the required target performance with consideration for adaptation to various car models.
Journal Article

The Predictive Simulation of Exhaust Pipe Narrow-band Noise

2015-04-14
2015-01-1329
A method of predictive simulation of flow-induced noise using computational fluid dynamics has been developed. The goal for the developed method was application in the vehicle development process, and the target of the research was therefore set as balancing the realization of a practical level of predictive accuracy and a practical computation time. In order to simulate flow-induced noise, it is necessary to compute detailed eddy flows and changes in the density of the air. In the research discussed in this paper, the occurrence or non-occurrence of flow-induced noise was predicted by conducting unsteady compressible flow calculation using large eddy simulation, a type of turbulence model. The target flow-induced noise for prediction was narrow-band noise, a type of noise in which sound increases in specific frequency ranges.
Technical Paper

The Effects on Motorcycle Behavior of the Moment of Inertia of the Crankshaft

1997-02-24
971060
The moment of inertia of the crankshaft cannot be ignored when analyzing the dynamics of a motorcycle. In this research, the tire friction force (calculated by drag and tire side force) was used as an index of the drive performance. The ratio of roll rate and steering torque (here after referred to as a roll rate gain) was used as an index of the cornering performance, and it was analyzed as the influence of the moment of inertia of a crankshaft on the drive performance as well as cornering performance. As a result, the influence on drive performance and cornering performance by the moment of inertia has been found.
Technical Paper

The Effects of Engine Speed and Injection Pressure Transients on Gasoline Direct Injection Engine Cold Start

2002-10-21
2002-01-2745
Results are presented from an experimental study of the effects of engine speed and injection pressure transients on the cold start performance of a gasoline direct injection engine operating on iso-octane. The experiments are performed in an optically-accessible single-cylinder research engine modified for gasoline direct injection operation. In order to isolate the effects of the engine speed and injection pressure transients, three different cold start simulations are used. In the first cold start simulation the engine speed and injection pressure are constant. In the second cold start simulation the injection pressure is constant while the engine speed transient of an actual cold start is simulated. In the third cold start simulation both the engine speed and the injection pressure transients of an actual cold start are simulated.
Technical Paper

The Development of Brake Feel with Variable Servo Ratio Control

2015-09-27
2015-01-2696
We had developed Electric Servo Brake System, which can control brake pressure accurately with a DC motor according to brake pedal force. Therefore, the system attains quality brake feeling while reflecting intentions of a driver. By the way, “Build-up” is characteristics that brake effectiveness increases in accordance with the deceleration of the vehicle, which is recognized as brake feeling with a sense of relief as not to elongate an expected braking distance at a downhill road due to large-capacity brake pad such as sports car and large vehicles. Then, we have applied the optical characteristic control to every car with Electric Servo Brake System by means of brake pressure control but not brake pad. Hereby, we confirmed that the control gives a driver the sense of relief and the reduction of pedal load on the further stepping-on of the pedal. In this paper, we describe the development of brake feel based on the control overview.
Technical Paper

The Application of the Statistical Design Support System Toward Optimization of Vehicle Safety Equipmen

1999-09-28
1999-01-3209
The “Statistical Design Support System” produces a new practical optimal design method. It can be used even on nonlinear behavior. The optimization can be carried out with this system using a small number of calculation results. The authors applied it to the design optimization of the occupant restraint system in order to reduce the injury criteria based on the crash simulation. In line with growing interest and improvements in technology on vehicle safety, it will be necessary to consider some different crash situations simultaneously. The authors made an optimal design taking into account the different collision conditions. This paper describes the effectivity analysis and the optimization.
Technical Paper

Temperature Prediction of Actual Contact Portion of the Metal Belt CVT

2018-04-03
2018-01-0122
In a previous study by the authors, austenite (γ phase) formed on the topmost of pulleys after long term operation of continuously variable transmission (CVT) [1]. In general, martensite arising from heat treatment forms on the surface of pulleys and gears. Therefore, the sliding surface has a body-centered cubic (BCC) metal structure, and transformation into and existence of austenite (γ phase) is difficult unless there is a thermal history exceeding the eutectoid point. For the verification of that possibility, it was crucial to obtain temperature variation on the sliding surface. The major problem for such measurements was rotation of parts inside an operating CVT. In this study, uniquely developed measurement system enabled non-contact temperature measurement near the contact portion. Results were substituted to heat conduction equation to predict the temperature at the exact contact portion.
Journal Article

Technique for Predicting Powertrain Self-Excited Vibration at Vehicle Start-Up

2015-04-14
2015-01-1674
A clutch FEM model was created to quantitatively understand the operation and dynamic friction characteristics of the facing materials. And a simulation model for dynamic behavior analysis of the torque transmission characteristics from a transmission that incorporates drivetrain damping characteristics to the vehicle body was constructed. The data of the actual vehicle was also measured when vibration occurs and loss torque is generated by friction in the drivetrain, and damping characteristics were determined from the measurement values. In order to confirm the usefulness of this method, the construction of a clutch that suppresses self-excited vibration was examined by simulation and the reduction of vibration in an actual vehicle was confirmed.
Technical Paper

Study on Weave Behavior Simulation of Motorcycles Considering Vibration Characteristics of Whole Body of Rider

2018-10-30
2018-32-0052
In motorcycles, the mass difference between a vehicle and a rider is small and motions of a rider impose a great influence on the vehicle behaviors as a consequence. Therefore, dynamic properties of motorcycles should be evaluated not merely dealing with a vehicle but considering with a man-machine system. In the studies of a simulation for vehicle dynamics, various types of rider models have been proposed and it has already been reported that rider motions have a significant influence on the dynamic properties. However, the mechanism of the interaction between a rider and a vehicle has not been clarified yet. In our study, we focused on weave motion and constructed a full vehicle simulation model that can reflect the influences of the movements of the rider’s upper body and lower body. To construct the rider model, we first measured the vibrational characteristics of a human body using a vibration test bench.
Technical Paper

Study on Roadway NMHC Concentrations Around Clean Air Vehicles

1998-02-23
980679
An ambient air quality study was carried out in the South Coast Air Basin in California in the summer of 1997. Non-methane hydrocarbon concentrations in the air to which clean air vehicles were exposed on roadways were studied by both computational simulations and experiments. Compared with conventional technologies of air quality simulations, a micro-scale model of ambient pollutants on roadways was used. Experimental observations showed that proposed model gave improved level of roadway concentrations.
Technical Paper

Study on Reduction of Timing Chain Friction Using Multi-Body Dynamics

2012-04-16
2012-01-0412
A method for reducing friction loss in the engine timing chain was investigated using multi-body dynamics simulation. The method known as the link-by-link model was employed in the simulation to enable representation of the behavior of each single link of the chain and its friction due to contact. In order to predict the friction under actual engine operating conditions, a model that takes camshaft torque fluctuation and crankshaft rotational speed fluctuation into account was created. This simulation was used to verify the detailed distribution of friction in each part of the chain system as well as the changes of friction in the time domain. As a result, it was found that the sliding friction in the chain tensioner guide and chain guide was larger than in other locations. Based on this result, a method of reducing friction entirely by measures in mechanisms and structures without relying on low-friction materials was investigated.
Journal Article

Study on Analysis of Input Loads to Motorcycle Frames in Rough Road Running

2014-11-11
2014-32-0021
In this study, we developed a simulation method for rough road running condition to reproduce the behaviors of a vehicle body and to precisely estimate the input loads to the frame. We designed the simulation method focusing on a front fork model and a rider model optimized for this type of analysis. In the suspension model development, we conducted detailed measurement of the suspension characteristics on a test bench. Based on the yielded results, the friction force, as well as the spring reaction force and the damping force, was reproduced in the suspension model. The friction of the suspension varies depending on the magnitude of the reaction force associated with bending and this effect was also implemented in the model. Regarding the rider model, the actual behavior of a rider was investigated through the recorded motion video data and used to define the necessary degrees of freedom.
Technical Paper

Study of Self-induced Vibration in an Operating Metal Pushing V-belt CVT

2012-04-16
2012-01-0309
The mechanism of vibration in a metal pushing V-belt was analyzed using a simulation of the dynamic behavior of the belt in order to identify measures in response to unexpected noise occurring during CVT development. The results showed that the unexpected noise originated in self-induced vibration occurring when the elements of the belt moved in the radial direction close to the exit of the drive pulley. This paper will also discuss the realization of a method of reducing the unexpected noise.
Technical Paper

Study of Riding Assist Control Enabling Self-standing in Stationary State

2018-04-03
2018-01-0576
In motorcycles traveling at medium to high speed, roll stability is usually maintained by restoration forces generated by a self-steering effect. However, when the vehicle is stationary or traveling in low speed, sufficient restoring force does not occur because some of the forces, such as centrifugal force, become small. In our study, we aimed at prototyping a motorcycle having roll stability when the vehicle is stationary or at low speed with a steering control for self-standing assist, while maintaining stability properties in medium to high speed. A model was built to represent dynamics of roll motion, which is composed of a fixed point mass located above the vehicle’s center of gravity and another movable point mass below that gravity center. According to the model, when steered, the roll moment direction generated by the shift of the movable point mass becomes the same as the direction generated by the ground contact point shift of the front tire.
Journal Article

Study of Reproducibility of Pedal Tracking and Detection Response Task to Assess Driver Distraction

2015-04-14
2015-01-1388
We have developed a bench test method to assess driver distraction caused by the load of using infotainment systems. In a previous study, we found that this method can be used to assess the task loads of both visual-manual tasks and auditory-vocal tasks. The task loads are assessed using the performances of both pedal tracking task (PT) and detection response task (DRT) while performing secondary tasks. We can perform this method using simple equipment such as game pedals and a PC. The aim of this study is to verify the reproducibility of the PT-DRT. Experiments were conducted in three test environments in which test regions, experimenters and participants differed from each other in the US, and the test procedures were almost the same. We set two types of visual-manual tasks and two types of auditory-vocal tasks as secondary tasks and set two difficulties for each task type to vary the level of task load.
Technical Paper

Study of 450-kW Ultra Power Dynamic Charging System

2018-04-03
2018-01-1343
This research sought to develop a dynamic charging system, achieving an unlimited EV cruising range by charging the EV at high power during cruising. This system would help make it possible to finish battery charging in a short time by contact with the EV while cruising and enable drivers to freely cruise their intended routes after charging. A simulation of dynamic charging conditions was conducted for ordinary autonomous cruising (i.e., ordinary EV cruising) when dynamically charging at a high power of 450-kW (DC 750 V, 600 A). This report discusses the study results of a method of building the infrastructure, as well as looking at the cruise test results and future outlook. In particular, the research clarified the conditions for achieving an unlimited vehicle cruising range with a 450-kW dynamic charging system. It also demonstrated that this system would allow battery capacities to be greatly reduced and make it possible to secure the battery supply volume and resources.
X