Refine Your Search

Topic

Search Results

Journal Article

Vehicle Longitudinal Control Algorithm Based on Iterative Learning Control

2016-04-05
2016-01-1653
Vehicle Longitudinal Control (VLC) algorithm is the basis function of automotive Cruise Control system. The main task of VLC is to achieve a longitudinal acceleration tracking controller, performance requirements of which include fast response and high tracking accuracy. At present, many control methods are used to implement vehicle longitudinal control. However, the existing methods are need to be improved because these methods need a high accurate vehicle dynamic model or a number of experiments to calibrate the parameters of controller, which are time consuming and costly. To overcome the difficulties of controller parameters calibration and accurate vehicle dynamic modeling, a vehicle longitudinal control algorithm based on iterative learning control (ILC) is proposed in this paper. The algorithm works based on the information of input and output of the system, so the method does not require a vehicle dynamics model.
Journal Article

Trajectory Planning and Tracking for Four-Wheel Independent Drive Intelligent Vehicle Based on Model Predictive Control

2023-04-11
2023-01-0752
This paper proposes a dynamic obstacle avoidance system to help autonomous vehicles drive on high-speed structured roads. The system is mainly composed of trajectory planning and tracking controllers. The potential field (PF) model is introduced to establish a three-dimensional potential field for structured roads and obstacle vehicles. The trajectory planning problem that considers the vehicle’s and tires’ dynamics constraints is transformed into an optimization problem with muti-constraints by combining the model predictive control (MPC) algorithms. The trajectory tracking controller used in this paper is based on the 7 degrees of freedom (DOF) vehicle model and the UniTire tire model, which was discussed in detail in previous work [25, 26]. The controller maintains good trajectory tracking performance even under extreme driving conditions, such as roads with poor adhesion conditions, where the car’s tires enter the nonlinear region easily.
Technical Paper

The Development of a Small Restricted Turbocharged Racecar Engine

2016-11-08
2016-32-0061
This paper summarized the development methodology and technical experiences on Formula Student racecar engines acquired by Jilin University from 2011 to 2015. This series of engines are all based on 600cc 4-cylinder motorcycle gasoline engines and were modified to turbocharged engines which met the Formula Student technical regulations, in order to achieve higher power output, wider torque band as well as lower fuel consumption. During the development process, multiple research projects have been conducted surrounding the turbocharging technology. These research projects have covered multiple areas including the matching of the flow rate characteristics of the engine and the turbocharger, the design of intake and exhaust systems, research on the wastegate as well as its actuator, the tuning and control of the boost pressure as well as the design of the lubrication system for the turbocharger, etc.
Technical Paper

The Bus Monitoring and Fault Diagnosis System Design of Hybrid Vehicle Based on Embedded System

2010-10-05
2010-01-1992
Embedded bus monitoring and fault diagnosis system, which was used on the hybrid vehicle was designed in this paper. And this system took the 32-bit embedded one as a hardware platform, customized a WinCE6.0 operation system and used EVC as the tool to design the embedded application. The functions of CAN communication, protocol defamations etc were realized. Good human-computer interaction is developed and the system has already been applied on the bus.
Technical Paper

Study on the Gear Meshing and Order Tracking of a Transfer Case

2017-03-28
2017-01-1119
Gear transmission is widely used in mechanical transmission system and acts an important role in automotive industry. Manufacturing errors, assembly looseness, gear wear issues may result in gear backlash, noise and fatigue damage seriously affecting efficiency and service life of gear transmission. For gear transmission assembled, it is important to monitor the conditions of gear meshing and prevent the occurrence of dangerous situations. How to define the issues of gear tooth wear, misaligned bearing, gear eccentricity, backlash, and how to find faulty planetary gear sets and specific issues existing in gear transmission are meaningful and significant to ensure the quality of product. This paper starts from the analysis on gearing mechanism. Based on the behaviors represented by the issues, gear tooth wear, misaligned bearing, gear eccentricity and backlash are demonstrated and explained in detail.
Technical Paper

Studies on Anti-Slip Regulation Technologies for AMT Vehicles

2007-04-16
2007-01-1314
In order to improve the tractive ability, steering capability and directional stability, etc. of automated mechanical transmission (AMT) vehicles running on the wet and slippery road, the anti-slip regulation (ASR) technologies for AMT vehicles are developed. The significance of ASR for AMT vehicles is introduced; a road friction recognition method based on the deceleration of driving wheels is investigated; a fuzzy anti-slip control system based on adjustment of engine torque is developed and the corresponding experimental verification is conducted. The experimental results denote that the proposed method is effective to eliminate the excessive slip when the AMT vehicle travels on the low friction road.
Journal Article

Resolution of a Low Speed Vehicle Vibration Issue in EV Mode for a Hybrid Vehicle Prototype

2016-04-05
2016-01-1307
A vehicle vibration issue emerged for a hybrid prototype during low speed driving in EV mode. This work is focused on the effort to identify the root cause and resolve the issue. The endeavor begins by performing a motor test in moderate acceleration with an imposed constant torque load. All relevant information is simultaneously recorded, including vehicle speed, vibration of motor structure and seat track, motor rpm, voltage and current signals, etc. Then analyses are carried out to strive for a better understanding of the vibration characteristics and identify its mechanism. It is found that the torque ripple from the driving motor is the root cause of the low speed vehicle vibration in EV mode, and the torque ripple is found to be induced by the current distortion resulted from the current sensor drift and electromagnetic interference due to high current signals.
Technical Paper

Research on the Control Strategy of Electric Vehicle Active Suspension Based on Fuzzy Theory

2024-04-09
2024-01-2290
The performance of suspension system has a direct impact on the riding comfort and smoothness. For the traditional suspension can not effectively alleviate the impact of road surface and the poor anti-vibration performance, The dynamics model of vehicle suspension system is established, and the control model of vehicle four-degree-of-freedom active suspension is designed with fuzzy control strategy. On this basis, a comprehensive simulation model of the control model of vehicle active suspension coupled with road excitation is established. and the ride comfort of vehicles under different types of suspension are tested through Simulink. The simulation results show that compared with the passive suspension, the reduction of vehicle acceleration and dynamic deformation of the active suspension controlled by fuzzy PID can reach 33.76% and 22.45%. and the reduction of pitch Angle speed and dynamic load of the active suspension controlled by fuzzy PID can reach 16.18% and 10.72%.
Technical Paper

Research on Vehicle Stability Control Strategy Based on Integrated-Electro-Hydraulic Brake System

2017-03-28
2017-01-1565
A vehicle dynamics stability control system based on integrated-electro-hydraulic brake (I-EHB) system with hierarchical control architecture and nonlinear control method is designed to improve the vehicle dynamics stability under extreme conditions in this paper. The I-EHB system is a novel brake-by-wire system, and is suitable to the development demands of intelligent vehicle technology and new energy vehicle technology. Four inlet valves and four outlet valves are added to the layout of a conventional four-channel hydraulic control unit. A permanent-magnet synchronous motor (PMSM) provides a stabilized high-pressure source in the master cylinder, and the four-channel hydraulic control unit ensures that the pressures in each wheel cylinder can be modulated separately at a high precision. Besides, the functions of Anti-lock Braking System, Traction Control System and Regenerative Braking System, Autonomous Emergency Braking can be integrated in this brake-by-wire system.
Journal Article

Research on Multi-Vehicle Coordinated Lane Change of Connected and Automated Vehicles on the Highway

2019-04-02
2019-01-0678
With the rapid development of modern economy and society, traffic congestion has become an increasingly serious problem. Vehicle cooperative driving can alleviate traffic congestion and improve road traffic capacity. Compare with vehicle separate control, cooperative driving combines various vehicle systems, and highly integrates information on obstacle location, vehicle status and driving intention. Then the controller uniformly issues instructions to ensure the orderly driving of the platoon. In the cooperative driving platoon, the displacement difference and the speed difference between vehicles have a certain relationship, which reduces the possibility of traffic accidents and then improves the safety of driving. In the process of cooperative driving, if there are multiple vehicles whose speeds don’t meet the current lane requirements, or if there are obstacles ahead, multi-vehicle lane change measures must be taken.
Technical Paper

Research on Control of Vehicle Stability Control Based on Electro-Hydraulic Brake System

2007-08-05
2007-01-3650
Electro-Hydraulic Brake (EHB) system is a kind of active control brake systems of automobile, the pedal from the calipers actuation separated and no longer limited by conventional hardware. The system may come together with ABS, ESP, and ASR function, also the communication with other systems is done via the CAN network. EHB system may be classified a “stepping stone” technology to full brake-by-wire and brings huge transform for the performance of braking system. In this paper, vehicle dynamic models were established and accomplished the control strategy for vehicle stability control with EHB system which can adjust wheel and vehicle motion, improve the lateral and longitudinal vehicle stability. This result was verified by simulation which shows that the controller is effective on improving the vehicle stability.
Technical Paper

Research on Adaptive Cruise Control Strategy Considering the Disturbance of Preceding Vehicle and Multi-Objective Optimization

2021-04-06
2021-01-0338
Adaptive Cruise Control (ACC) includes three modes: cruise control, car following control, and autonomous emergency braking. Among them, the car following control mode is mainly used to manage the speed and vehicle spacing approach the preceding vehicle within the range of smooth acceleration changes. In addition, although the motion information signal of the preceding vehicle can be collected by auxiliary equipment, it is still a random variable and normally regarded as a disturbance to affect the performance of vehicle controller. Therefore, this paper proposed an ACC strategy considering the disturbance of the preceding vehicle and multi-objective optimization.
Journal Article

Physical Modeling of Shock Absorber Using Large Deflection Theory

2012-04-16
2012-01-0520
In this paper, a shock absorber physical model is developed. Firstly, a rebound valve model which is based on its structure parameters is built through using the large deflection theory. The von Karman equations are introduced to discover the physical relationships between the load and the deflection of valve discs. An analytical solution of the von Karman equations is then deducted via perturbation method. Secondly, the flow equations and the pressure equations of the shock absorber operating are investigated. The relationship between fluid flow rate and pressure drop of rebound valve is analyzed based on the analytical solution of valve discs deflection. Thirdly, an inter-iterative process of flow rate and pressure drop is employed in order to adequately consider the influence of fluid flow on damping force. Finally, the physical model is validated by comparing the experimental data with the simulation output.
Technical Paper

Personalized Human-Machine Cooperative Lane-Changing Based on Machine Learning

2020-04-14
2020-01-0131
To reduce the interference and conflict of human-machine cooperative control, lighten the operation workload of drivers, and improve the friendliness and acceptability of intelligent vehicles, a personalized human-machine cooperative lane-change trajectory tracking control method was proposed. First, a lane-changing driving data acquisition test was carried out to collect different driving behaviors of different drivers and form the data pool for the machine learning method. Two typical driving behaviors from an aggressive driver and a moderate driver are selected to be studied. Then, a control structure combined by feedforward and feedback control based on Long Short Term Memory (LSTM) and model-based optimum control was introduced. LSTM is a machine learning method that has the ability of memory. It is used to capture the lane-changing behaviors of each driver to achieve personalization. For each driver, a specific personalized controller is trained using his driving data.
Technical Paper

Personalized Adaptive Cruise Control Considering Drivers’ Characteristics

2018-04-03
2018-01-0591
In order to improve drivers’ acceptance to advanced driver assistance systems (ADAS) with better adaptation, drivers’ driving behavior should play key role in the design of control strategy. Adaptive cruise control systems (ACC) have many factors that can be influenced by different driving behavior. It is important to recognize drivers’ driving behavior and take human-like parameters to the adaptive cruise control systems to assist different drivers effectively via their driving characteristics. The paper proposed a method to recognize drivers’ behavior and intention based on Gaussian Mixture Model. By means of a fuzzy PID control method, a personalized ACC control strategy was designed for different kinds of drivers to improve the adaptabilities of the systems. Several typical testing scenarios of longitudinal case were created with a host vehicle and a traffic vehicle.
Technical Paper

Performance Analysis of Multi-Speed Torque Coupler for Hybrid Electric Vehicle

2016-04-05
2016-01-1149
A novel torque-coupling architecture for hybrid electric vehicles is proposed. The torque-coupling device is based on automated manual transmission (AMT), which is highly efficient and provides six gears for the engine and three gears for each motor to enable the engine and the motors to work at high-efficiency levels in most cases. The proposed power-shift AMT (P-AMT) does not have a hydraulic torque converter and wet clutches, which dampen the driveline shock. Thus, the drivability control of the P-AMT becomes a challenging issue. Accurate engine, motor model and transmission model have been built and the dynamic control of the gear shift process of PAMT in hybrid mode is simulated. The electric motors compensate for the traction loss during the gear shift of the engine.
Technical Paper

Optimal Anti-vibration Design of Vehicle-mounted Vibration Isolation Platform

2018-04-03
2018-01-1400
A vehicle-mounted anti-vibration system is designed to semi-actively reduce accelerations acting on vibration isolation platform under different road conditions. To provide the basis for optimal anti-vibration design, the kinematics and dynamics of the platform are analyzed to investigate the relationship between leg length, strength, the platform position and vibration properties. As the platform is fixed on vehicle, a combined vehicle-platform model is necessary for verifying the performance and applying some suitable control algorithms. Also, typical digital testing roads will be built using road load spectrum. To optimize the platform parameters, especially stiffness and damping, an active control system is designed at first. An anti-vibration system including a semi-active inerter is designed to match the control forces which are calculated from the above active system.
Technical Paper

Nonlinear Control of Vehicle Chassis Planar Stability Based on T-S Fuzzy Model

2016-04-05
2016-01-0471
In the past decades, the stability of vehicles has been improved significantly by use of variety of chassis control systems such as Antilock Braking System (ABS), Electric Stability Program (ESP) and Active Front Steering (AFS). Recently, in order to further improve the performance of vehicles, more and more researches are focused on the integration control of multiple degrees of freedom of vehicle dynamic. However, in order to control multiple degrees of freedom simultaneously, the nonlinear problems caused by the coupling between different degrees of freedom have to be solved, which is always a difficult task. In this paper, a three-degrees-of-freedom single track vehicle model, in which some nonlinear terms are considered, is built firstly. Then, the nonlinear model is processed by the fuzzy technique and the T-S fuzzy model is designed.
Technical Paper

Lateral Stability Control Algorithm of Intelligent Electric Vehicle Based on Dynamic Sliding Mode Control

2016-09-14
2016-01-1902
A new lateral stability control method, which is based on vehicle sideslip angle and tire cornering stiffness estimation, is proposed to improve the lateral stability of the four-in-wheel-motor-driven electric vehicle (FIWMD-EV) in this paper. Through the lateral tire force information, vehicle sideslip angle can be estimated by the extended kalman filter (EKF). Using the estimated vehicle sideslip angle, tire cornering stiffness can be also estimated by forgetting factor recursive least squares (FFRLS). Furthermore, combining with the vehicle dynamics model, an adaptive control target model is proposed with the information on vehicle sideslip angle and tire cornering stiffness. The new lateral stability control system uses the direct yaw moment control (DYC) based on dynamic sliding mode is proposed. The performance and effectiveness of the proposed vehicle state estimation and lateral stability control system are verified by CarSim and Simulink cosimulation.
Technical Paper

Investigation of Transient Performance for Gasoline Engine with Electronic Throttle Control System

2008-06-23
2008-01-1782
The calibration of the electronic throttle unit and the pedal unit was made. Based on it, an electronic control system of electronic throttle was designed and installed on a 4G18 engine. Engine experiment was made especially for its transient working condition. Engine performance at transient working condition was investigated. The test results indicate that the optimum way of opening the throttle valve is to open the throttle valve to the target location at once, when 4G18 engine transit from 2000r/min to 3000r/min without load. And its optimum calibration for the electronic throttle control unit is made based on the test results. The control system, the experiment, the test results and the calibration were introduced in this paper.
X