Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Level Remote Range Improvement with Low Cost Approach

2012-04-16
2012-01-0789
Basic Function: Vehicle remote is used for vehicle lock/unlock/search/Hazard lights /approach light functions for customer convenience and vehicle security system. Conventional approach: 1 Use of separate RF (Radio Frequency) receiver -Additional Cost impact. 2 High remote RF power - Reduced remote battery life and bigger remote size required 3 High sensitivity RF receiver - High cost. Low Cost approach: It involves the followings: 1 Integration of RF receiver inside the Body Control Module (BCM). 2 Low Power Remote and Optimization of Remote PCB layout to get the maximum power. 3 External wired antenna taken out from BCM and proper routine need be ensured to get the best performance. 4 BCM mounting location to get the best remote range in all vehicle directions. This paper relates to the methodology for low cost approach for the RF communication between remote transmitter and receiver with achieving the best remote performance at vehicle level condition.
Technical Paper

Use of Powder Metallurgy Based Connecting Rod for Diesel Engine Application

2023-05-25
2023-28-1352
The usage of forging a preformed, near net shape, compacted and sintered metal powder has been widely accepted since the eighties and is now one of the mainstays for producing Connecting rods in North America. However, its use in Indian subcontinent is limited as its counterpart i.e. conventional steel forging is still the most dominant. Powder metallurgy route has many advantages like good dimensional accuracy; minimum scattering of weight etc. Despite these advantages, the Powder metallurgy process is still not preferred predominantly due to technical (endurance) and infrastructural limitations. This work envisages combining the benefits of powder metallurgy process with the required mechanical properties viz. tensile and fatigue strength alongside design modifications to meet the requirements of a connecting rod for a 2-cylinder diesel engine. The connecting rods met the fatigue life at the required FOS equaling the performance of a conventionally forged connecting rod.
Technical Paper

Transient 1D Mathematical Model for Drum Brake System to Predict the Temperature Variation with Realistic Boundary Conditions

2017-01-10
2017-26-0299
Brake system is the most important system in the vehicle considering the overall vehicle safety and speed control. Brake applications are repetitive during a city traffic and hilly terrain on downhill gradient. Frequent braking gives rise to an overheating of the brake drum and its components. Braking operations at high temperature gives rise to problems like reduced deceleration due to loss of brake pad friction characteristics, pad softening and sticking to drum, pad distortion and wear etc. All these factors collectively result in deterioration of the braking performance and reduction of brake pad durability with time. Till date most of the thermal analysis performed for brake drum heating are through physical testing using brake system prototypes and by means of CFD tools. These methods are time consuming and expensive. There is a need for an alternative method to reduce physical trials and prototype building and reduce dependency on CFD analysis.
Technical Paper

Tackle Low Frequency Structural Vibration in AMT Car using Gear Shift Schedule Optimization

2017-01-10
2017-26-0198
The present work focuses on optimization of gear shift pattern of an AMT vehicle to improve its NVH performance without causing any adverse effect on any other vehicle performance attribute. The vehicle which was identified with the structural body resonance at low frequency had discomforting boom noise in a particular engine rpm zone and at corresponding vehicle speed. With the initial shift pattern (will be referred as V1 gear shift schedule), the gear shifts were calibrated such that when vehicle is driven in the city with 20 to 60 kmph speed, the vehicle operated mostly in the best fuel economy zone but it used to pass through structural resonance frequency. This resulted in the presence of continuous boom leading to an unpleasant driving experience. In order to avoid the presence of boom noise during city driving, the gear shift points were optimized (will be referred as V2 gear shift schedule) such that the vehicle did not operate in affected engine speed range.
Technical Paper

Systematic Approach for Optimizing Tailgate Stoppers and Its Location to Prevent Squeak and Rattle

2021-09-22
2021-26-0285
Tailgate stoppers play vital role in exerting preload on the Tailgate latch mechanism and also restrict the relative motion of the Tailgate against vehicle Body in White (BIW). These stoppers act as over-slam dampeners and reduce the transmissibility of vibrations thereby reduce the risk of Squeaks & Rattles (S&R) noises. S&R noises from Tailgate are most annoying to the rear passengers in the vehicle and are recurring in nature. Preventing these issues during design is a challenging task. S&R risk simulations enable us to conduct virtual Design of Experiments (DOEs) and arrive at optimal solutions. This approach helps in reducing the cost of the design changes that are required in the physical prototype at the later stages of product development and save time. The risk evaluation in the simulations is based on the relative displacement at the interfaces of two components.
Technical Paper

Simulation of Clutch Inertial Effects on Gear Shifting, Synchronizer Capacity and Accelerated Testing of Synchronizers

2013-11-27
2013-01-2807
In today's scenario, most of the OEMs use manual transmissions with synchronizer gear shifting system for ease of gear shifting. It gives very high fuel efficiency. Gear shifting is a customer touch point, hence it is very important to select adequate synchronizer capacity so that it will perform in better and last longer. To test the synchronizers, there are many test methods which give the idea about life of synchronizer and its performance, in different conditions. Regular synchronizer rig tests consume lot of time in deriving the results. So it is very important to find out a way which will give same results within short time period. To carry out the short time test or accelerated test, we need to understand the effect of various factors like reflected inertia, drag torque, differential speed, synchronizing time, and gear shifting force on synchronizer capacity.
Technical Paper

Simulation Techniques for Rubber Gasket Sealing Performance Prediction

2021-09-22
2021-26-0388
Engine performance and emission control are key attributes in the overall engine development in which sealing of the mating components plays an important role to achieve the same. Rubber gaskets are being used for sealing of different Internal Combustion (IC) engine components. Gasket sealing performance needs to be ensured at initial development stage to avoid the design changes at the later part of development cycle. Design changes at later stage of development can potentially influence parameters like optimization, cost and time to market. Demand of utilization of virtual tools (front loading) is growing with the increasing challenges like stringent product development cycle time and overall project cost. This paper describes a procedure to simulate the rubber gasket and groove for different material conditions (dimensional tolerances). This entire simulation is divided into two phases. In the first phase of the simulation, Load Deflection curve (LD curve) is established.
Technical Paper

Sensitivity of LCA Bush Stiffness in Judder while Braking for Twist Blade Type Suspension in Passenger Cars

2021-09-22
2021-26-0513
This paper deals with specific NVH related issues attributed due to LCA bush stiffness and Brake rotor DTV. While the focus is on the cause of such vibration (judder while braking at 120 kmph), the presentation goes to the root-cause of judder and how various suspension/tire/brake components contribute to the generation/amplification of such vibration. Results are presented for twist blade types of vehicle suspensions, along with procedures that were developed specifically for this study and some of the actual case study. DTV-Disk thickness variation
Technical Paper

Seat Structure Comfort Evaluation Using Pink Noise and Human/Dummy Transmissibility Correlation

2013-11-27
2013-01-2852
Vehicle floor vibration is the resultant of different road inputs damped through various transfer paths. Seat comfort, which depends on these floor vibrations, can be evaluated with a single input signal “Pink noise”; which constitutes various road inputs. Transmissibility of seat structure on a vibration shaker with pink noise input includes all possible responses of road inputs. Still, transmissibility profile at vehicle end and component level varies. This is due to the utilization of “dummy” on component level testing on vibration shaker, which acts as a dead weight with dissimilar damping characteristics of human. A transmissibility correlation between human and dummy is attained by replacing the dummy in place of human and actuating it to find the difference in contribution between them for different class of vehicles. This contribution extrapolation from the damping effects of human and dummy is applied on dummy transmissibility.
Technical Paper

Reduction of Idle Shake in a Small Commercial Vehicle

2015-06-15
2015-01-2352
Noise Vibration and Harshness (NVH) refinement is one of the important parameters in modern vehicle development. In city traffic conditions, idling is an engine operating condition where a driver focuses attention more to his/her vehicle. Tactile vibration & noise levels inside the cab play an important role in all vehicles, especially those powered by diesel engines where combustion pressures are higher. They lead to discomfort & fatigue of passengers of even a low cost vehicle. Now its idle NVH is influenced mainly by vibration-isolation provided by power-train (PT) mounting design, This paper describes steps taken to improve the idle vibrations at a driver seat of a small commercial vehicle (SCV) with a 2-cylinder diesel engine of 800 cc through redesign of PT-mounting along with fine tuning of idle speed of the engine. A resonance was avoided between the first firing order at idling and PT rigid-body mode in pitching.
Technical Paper

Radiated Noise Reduction in a Single Cylinder Direct Injection (DI) Naturally Aspirated (NA) Engine

2011-05-17
2011-01-1503
Small goods carrier and passenger vehicles powered by Naturally Aspirated (NA) Direct Injection (DI) diesel engines are popular in Indian automobile market. However, they suffer from inherently high radiated noise and poorly perceived sound quality. This paper documents the steps taken to reduce the radiated noise level from such an engine through structural modifications of major noise radiating components identified in the sound power analysis. The work is summarized as follows; Baseline radiated noise measurements of power train and identification of major noise sources through sound intensity mapping and noise source ranking (NSR) in an Engine Noise Test Cell (ENTC) Design modifications for identified major sources in engine structure Vehicle level assessment of the radiated noise in a Vehicle Semi-Anechoic Chamber (VSAC) for all the design modifications. A reduction of 7 dB at hot idle and 4 - 8 dB in loaded speed sweep conditions was observed with the recommended modifications.
Technical Paper

Procedure for Material Failure Characterization through GISSMO

2019-01-09
2019-26-0284
Vehicle crashworthiness is an important aspect of vehicle development. Vehicle structural performance plays a critical role during crash for controlling the occupant injuries. During a crash event, vehicle energy management governs the structural performance and passenger compartment integrity. However, these parameters are dependent on material properties such as yield/ultimate tensile strength, work hardening effects, strain rate dependency, material elongations and material fracture strains. Appropriate representation of these material properties in CAE (Computer Aided Engineering) environment is very critical for reliable prediction of vehicle structural performance during development phase. Among all material properties, material fracture strain is the most complex one and needs detailed material characterization approach for failure definitions.
Technical Paper

Prediction of Vehicle Headlamp Condensation Phenomenon Using Computational Fluid Dynamics

2021-09-22
2021-26-0325
The main task of the automotive headlights on cars is to illuminate the roadway and facilitate the driver fatigue-free and safe driving. An automotive headlamp is exposed to thermal variations during its operations and also exposed to the different environmental conditions. Automotive headlamp compartment is not completely sealed and vents are provided to exchange the air between environment and headlamp compartment for thermal cooling of the internal components. An automotive headlamp compartment is an environment with high thermal and low air flow exchanges with the ambient as results humidity can accumulated inside the headlamp compartment and there is a possibility of thin mist layer formation on the lens inner surface [1]. The combined use of numerical simulation and experimental studies is an important approach for headlamp design. This paper summarizes CFD simulation results for automotive headlamp condensation and de-condensation using ANSYS FLUENT.
Journal Article

Performance Cascading from Vehicle-Level NVH to Component or Sub-System Level Design

2017-01-10
2017-26-0205
Before a physical proto-vehicle is assembled, various components or subsystems are ready by Tier-I or II suppliers. During final design judgement of the vehicle thru’ CAE or Mule-vehicle testing, performance target compliance need be assured for all these components to meet the Vehicle-level NVH targets. The work here studies some of the major components of a passenger car. Their individual NVH response can be critical to be cascaded for meeting the final targets for the vehicles running over roads. Conclusions of the study challenge some of traditional beliefs or generic targets. Often the component level response deviating from its own targets may not have an adverse influence on NVH of the vehicle facing multiple excitations from tyre/road, wind and power-train in a frequency band of interest.
Technical Paper

Overview of Various Scratch Test Methods for High Gloss Polymer Materials

2021-09-22
2021-26-0448
Polymers are substituting traditional materials, such as metals, in existing as well as new applications, both for structural and aesthetic applications as they are lightweight, customizable and are easy to mould into complex shapes. With such an extensive use of polymers, there is a need to carefully scrutinize their performance to ensure reliability. This is particularly the case in the automotive and electronic industries where the aesthetic appeal of their products is of prime concern and any visible scratch damage is undesirable. Concern for aesthetics has led to a need for the quantification of visibility due to scratch damage on polymeric surfaces Many painted plastic parts used in vehicles are being replaced with the molded-in color plastics for cost reduction and also due to environmental concerns associated with solvent emissions. There are multiple methods used for scratch evaluation of polymers and paints.
Technical Paper

Opportunities and Control Measures for Sustainable Transport Growth in Emerging Economy Regions-India

2013-04-08
2013-01-1037
Sustainable development is a very complex concept involving several inter-related issues and concerns. Globalization has given a new dimension to social, economic and environmental development associated with the perceived responsibilities and growth indicators. Both developing and developed countries have the opportunities to exploit comparative advantages in the changing economic, social and environmental scenario while targeting sustainable growth together with expansion of the business prospects. Every region perceives these opportunities with different notion. There is a plethora of indicators for assessing sustainability. However, assessment criteria, prioritization and trade off for a given sustainability parameter against the other could be very complex while evolving transport growth model in emerging economies.
Technical Paper

NVH Refinement of Small Gasoline Engine through Digital and Experimental Approach

2017-01-10
2017-26-0211
Today’s competitive market demands for low cost passenger cars with lighter, smaller size, peppy response and fuel efficient engines and having world class NVH refinement levels. For such requirements, it is essential to optimize the product starting from the design conceptual stage, considering all performance aspects. Generally, three cylinder engines, due to less reciprocating masses, compared to four-cylinder engine, are said to be fuel efficient for the same capacity. Nevertheless, NVH problems caused by inherent imbalance forces and couples remain as drawback of the three-cylinder engine. However, through optimal design of the crank train, control of cylinder to cylinder pressure variation, stiffening of the engine structure, optimizing the integration with a vehicle through proper design of mounts, NVH refinement levels can be improved.
Technical Paper

Multi Axis Fatigue Test of Lift Axle Assembly through Real Time Simulation Abstract

2021-09-22
2021-26-0486
This paper discusses the test setup and methodology required to validate complete lift axle assembly for simulating the real time test track data. The correlation of rig vs track is discussed. The approach for reduction of validation time by eliminating few of the non-damaging tracks/events, its correlation with real life condition is discussed, and details are presented. With increased competition, vehicle development time has reduced drastically in recent past. Bench test procedure using accelerated test cycle discussed in this paper will help to reduce development time and cost. Process briefed in this paper can also be used for similar test specification for other structural parts or complete suspension system of heavy commercial vehicles.
Technical Paper

Modeling and Optimization of Pneumatic Brake System for Commercial Vehicles by Model Based Design Approach

2017-09-17
2017-01-2493
Apart from being an active safety system the brake system represents an important aspect of the vehicle dynamics. The vehicle retardation and stopping distance completely depend upon the performance of brake system and the functionality of all components. However, the performance prediction of the entire system is a challenging task especially for a complex configuration such as multi-axial vehicle applications. Furthermore, due to its complexity most often the performance prediction by some methods is limited to static condition. Hence, it is very important to have equivalent mathematical models to predict all performance parameters for a given configuration in all different conditions This paper presents the adopted system modelling approach to model all the elements of the pneumatic brake system such as dual brake valve, relay valve, quick release valve, front and rear brake actuators, foundation brake etc.
Technical Paper

Latest Options for Replacing HFC-134a Refrigerant in MACs

2020-04-14
2020-01-1254
With the passage of the Kigali Amendment to the Montreal Protocol, HFC-134a refrigerant will be phased down in all markets worldwide, including those where automotive companies have been slow to embrace HFO-1234yf. Engineers are currently being challenged to design MAC systems using alternate low GWP refrigerants that are allowed by regulations, and are simultaneously cost-effective to manufacture, energy efficient, safe, reliable, affordable for consumers, and also suitable in electrified vehicles.
X