Refine Your Search

Topic

Search Results

Standard

Passenger Car and Light Truck Automatic Transmission and Automatic Transaxle Test Code

2015-06-30
CURRENT
J651_201506
The extent of test conditions on the dynamometer must be sufficient to determine the efficiency characteristics corresponding to the following range of vehicle operations in all gear ratios with locked torque converters (open converter can also be done where appropriate and noted). a Efficiency versus output speed versus input torque b Torque ratio versus output speed c Input speed versus output speed d Output torque versus output speed e Parasitic loss versus input speed (spin losses) f Cooler flow g Output torque bias (front wheel drive transaxles)
Standard

Park Standard for Automatic Transmissions

2007-10-22
HISTORICAL
J2208_200710
To provide a Recommended Practice for validating the function and integrity of an automatic transmission park mechanism with its associated control system and environment.
Standard

Park Standard for Automatic Transmissions

2016-05-26
CURRENT
J2208_201605
To provide a Recommended Practice for validating the function and integrity of an automatic transmission park mechanism with its associated control system and environment.
Standard

PARK STANDARD FOR AUTOMATIC TRANSMISSIONS

1993-06-01
HISTORICAL
J2208_199306
To provide a Recommended Practice for validating the function and integrity of an automatic transmission park mechanism with its associated control system and environment.
Standard

Low-Speed Continuous Slip SAE No. 2 μPVT Procedure

2023-11-15
CURRENT
J2964_202311
This SAE Recommended Practice is intended as the definition of a standard test, which may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering its use. The SAE No. 2 friction test is used to evaluate the friction characteristics of automatic transmission plate clutches with automotive transmission fluid combinations. The specific purpose of this document is to define a µPVT test for the evaluation of the variation of wet friction system low speed slip characteristics as a function of speed, temperature, and pressure. This procedure is intended as a suggested method for both suppliers and end users. The only variables selected by the supplier or user of the friction system are: Friction material Fluid Reaction plates Oil flow (optional) These four variables must be clearly identified when reporting the results of this test.
Standard

Hydrodynamic Drives Terminology

2019-12-02
CURRENT
J641_201912
Since the torque converter and fluid coupling are commonly used components of automatic transmissions in industry, the SAE appointed a committee to standardize terminology, test procedure, data recording, design symbols, and so forth, in this field. The following committee recommendations will facilitate a clear understanding for engineering discussions, comparisons, and the preparation of technical papers. The recommended usages represent the predominant practice or the acceptable practice. Where agreement is not complete, alternates have been included for clarification. EXAMPLE: Two systems of blade angle designations are described. Consequently, when a blade angle is specified, the system should be designated. This SAE Recommended Practice deals only with the physical parts and dimensions and does not attempt to standardize the design considerations, such as the actual fluid flow angle resulting from the physical blade shape.
Standard

Hydrodynamic Drives Terminology

2000-03-10
HISTORICAL
J641_200003
Since the torque converter and fluid coupling have become commonly used components of automatic transmissions in industry, the SAE appointed a committee to standardize terminology, test procedure, data recording, design symbols, and so forth, in this field. The following committee recommendations will facilitate a clear understanding for engineering discussions, comparisons, and the preparation of technical papers. The recommended usages represent the predominant practice or the acceptable practice. Where agreement is not complete, alternates have been included for clarification. This SAE Recommended Practice deals only with the physical parts and dimensions and does not attempt to standardize the design considerations, such as the actual fluid flow angle resulting from the physical blade shape.
Standard

Hydrodynamic Drive Test Code

2023-08-01
CURRENT
J643_202308
The range of test conditions on the dynamometer shall be sufficient to determine the primary operating characteristics corresponding to the full range of vehicle operations. The characteristics to be determined are: a Torque ratio versus speed ratio and output speed b Input speed versus speed ratio and output speed c Efficiency versus speed ratio and output speed d Capacity factor versus speed ratio and output speed e Input torque versus input speed NOTE: For more information about these characteristics and the design of hydrodynamic drives, refer to “Design Practices: Passenger Car Automatic Transmissions,” SAE Advances in Engineering, AE-18 (Third Ed.) or AE-29 (Fourth Ed.).
Standard

Hydrodynamic Drive Test Code

2018-12-05
HISTORICAL
J643_201812
The range of test conditions on the dynamometer shall be sufficient to determine the primary operating characteristics corresponding to the full range of vehicle operations. The characteristics to be determined are: a Torque ratio versus speed ratio and output speed b Input speed versus speed ratio and output speed c Efficiency versus speed ratio and output speed d Capacity factor versus speed ratio and output speed e Input torque versus input speed NOTE: For more information about these characteristics and the design of hydrodynamic drives, refer to “Design Practices: Passenger Car Automatic Transmissions,” SAE Advances in Engineering, AE-18 (Third Ed.) or AE-29 (Fourth Ed.).
Standard

Hydrodynamic Drive Test Code

2011-04-04
HISTORICAL
J643_201104
The range of test conditions on the dynamometer shall be sufficient to determine the primary operating characteristics corresponding to the full range of vehicle operations. The characteristics to be determined are: a Torque ratio versus speed ratio and output speed b Input speed versus speed ratio and output speed c Efficiency versus speed ratio and output speed d Capacity factor versus speed ratio and output speed e Input torque versus input speed NOTE: For more information about these characteristics and the design of hydrodynamic drives, see “Design Practices—Passenger Car Automatic Transmissions,” SAE Advances in Engineering, AE18 or AE29
Standard

Hydrodynamic Drive Test Code

2000-05-16
HISTORICAL
J643_200005
The range of test conditions on the dynamometer shall be sufficient to determine the primary operating characteristics corresponding to the full range of vehicle operations. The characteristics to be determined are: a Torque ratio versus speed ratio and output speed b Input speed versus speed ratio and output speed c Efficiency versus speed ratio and output speed d Capacity factor versus speed ratio and output speed e Input torque versus input speed NOTE—For more information about these characteristics and the design of hydrodynamic drives, see “Design Practices—Passenger Car Automatic Transmissions,” SAE Advances in Engineering, Vol. 5.
Standard

HYDRODYNAMIC DRIVE TEST CODE

1989-06-01
HISTORICAL
J643_198906
The range of test conditions on the dynamometer shall be sufficient to determine the primary operating characteristics corresponding to the full range of vehicle operations. The characteristics to be determined are: a Torque ratio versus speed ratio and output speed. b Input speed versus speed ratio and output speed. c Efficiency versus speed ratio and output speed. d Capacity factor versus speed ratio and output speed. e Input torque versus input speed. NOTE: For more information about these characteristics and the design of hydrodynamic drives, see "Design Practices--Passenger Car Automatic Transmissions," SAE Advances in Engineering, Vol. 5.
Standard

FLYWHEELS FOR ENGINE-MOUNTED TORQUE CONVERTERS

1995-03-05
HISTORICAL
J927_199503
This SAE Recommended Practice defines flywheel configuration to promote standardization of flywheels for engine flywheel mounted torque converters. Tables 1A and 1B and Figure 1 give dimensions for flywheels mounted-type torque converters. For torque converters using drive ring overcenter type disconnect clutch, see SAE J620.
Standard

FLYWHEELS FOR ENGINE MOUNTED TORQUE CONVERTERS

1977-03-01
HISTORICAL
J927B_197703
This SAE Recommended Practice defines flywheel configuration to promote standardization of flywheels for engine flywheel mounted torque converters. Table 1 and figure give dimensions for flywheels for torque converters. For torque converter with a front disconnect clutch, refer to applicable SAE Standard or Recommended Practice.
Standard

ENGINE FLYWHEEL HOUSINGS

1976-12-01
HISTORICAL
J617C_197612
This SAE standard defines flywheel housings and mating flange configuration for industry standardization, interchangeability, and compatibility. Dimensions and tolerances shown are millimeter (inch). Table 1 and the figure give dimensions for flywheel housings. The figure also shows spacing for eight, twelve, and sixteen bolt flange mounting patterns.
X