Refine Your Search

Search Results

Journal Article

Vehicle Parameter Estimation Based on Full-Car Dynamic Testing

2015-04-14
2015-01-0636
Effectively obtaining physical parameters for vehicle dynamic model is the key to successfully performing any computer-based dynamic analysis, control strategy development or optimization. For a spring and lump mass vehicle model, which is a type of vehicle model widely used, its physical parameters include sprung mass, unsprung mass, inertial properties of the sprung mass, stiffness and damping coefficient of suspension and tire, etc. To minimize error, the paper proposes a method to estimate these parameters from vehicle modal parameters which are in turn obtained through full-car dynamic testing. To verify its effectiveness, a visual vehicle with a set of given parameters, build in the Adams(Automatic Dynamic Analysis of Mechanical Systems)/Car environment, is used to perform the dynamic testing and provide the testing data for the parameter estimation.
Technical Paper

Tyre Load Analysis of Hydro-Pneumatic Interconnected Suspension with Zero Warp Suspension Stiffness

2015-04-14
2015-01-0630
The purpose of this paper is to present a concept of Hydro-Pneumatic Interconnected Suspension (HPIS) and investigate the unique property of the zero warp suspension stiffness. Due to the decoupling of warp mode from other modes, the road holding ability of the vehicle is maximized meanwhile the roll stability and ride comfort can be tuned independently and optimally without compromise. Ride comfort can be improved with reduced bounce stiffness and the progressive air spring rate can reduce the requirement of suspension deflection space. The roll stability can also be improved by increased roll stiffness. Vehicle suspension system modelling and modal analysis are carried out and compared with conventional suspension. The frequency response of tyres' dynamic load reveals that the proposed zero-warp-stiffness suspension enables the free articulation of front and rear axles at low frequency.
Technical Paper

Two Motor Two Speed Power-Train System Research of Pure Electric Vehicle

2013-04-08
2013-01-1480
Method to improve the efficiency and the design of more efficient pure electric vehicle (PEV) system is a research hotspot for the automobile industry worldwide. Traditionally, PEV powertrains are dominated almost exclusively by single reducer structures in both concept and commercially available PEVs. This paper presents a novel two motor two speed pure electric power-train structure to study alternate methods for improving the operating efficiency of a typical PEV. This idea is derived from conventional power splitting transmissions to achieve motor efficiency optimization and ultimately lead to running range improvement. Through parameter matching and simulation, results demonstrated that the proposed two motor two speed PEV can realize better vehicle performance than single reducer PEV system; furthermore it can behave even better than a similar single motor two speed system.
Journal Article

Transient Responses of a Hydraulic Power Assisted Vehicle Steering System

2011-04-12
2011-01-0984
This paper presents a comprehensive model of a hydraulic power steering system for predicting the transient responses under various steering inputs. The first principles of multi-body system dynamics and fluid mechanics are applied to model key nonlinear components and in particular, the rotary spool valve, piped fluid lines, the frictional coupling between multiple contacting surfaces with use of the empirical data. The system model, which integrates together all of lump masses, fluid line elements and hydraulic components, is formulated using the state space representation approach. It contains time-variant coefficient matrices resulting from the nonlinearities in the fluids systems. A numerical simulation scheme is developed to obtain the system transient responses and the results are compared with those measured from the tests.
Technical Paper

Study of Power Losses in a Two-Speed Dual Clutch Transmission

2014-04-01
2014-01-1799
This paper mainly studies the power losses in a refined two-speed dual clutch transmission which is equipped in a electric vehicle test rig. Both numerical and experimental investigations are carried out. After theoretical analysis of the power losses original sources, the developed model is implemented into simulation code to predict the power losses. In order to validate the effectiveness of the proposed model, results from experimental test are used to compare the difference the simulation and test. The simulation and test result agree well with each other. Results show that the power losses in the two-speed are mainly generated by multi-plate wet clutch drag torque and gear churning loss.
Technical Paper

Sensitivity of Key Parameters to Dynamics of Hydraulic Power Steering Systems

2005-05-16
2005-01-2389
A comprehensive mathematical model of a typical hydraulic power rack and pinion steering system is developed, and the dynamic characteristics of the steering system are analyzed. The mechanism, hydraulic supply lines and the rotary spool valve of a hydraulic power steering system are included in the model, and the numerical calculation is conducted to investigate the sensitivities of the key parameters of the steering system. The results show that the profile of the spool valve and the fluctuation of flow rates significantly affect the dynamic characteristics the steering system.
Journal Article

Robust Yaw Moment Control for Vehicle Handling and Stability

2009-04-20
2009-01-0578
This paper presents a robust controller design method for improving vehicle lateral stability and handling performance. In particular, the practical load variation will be taken into account in the controller synthesis process such that the controller can keep the vehicle lateral stability and handling performance regardless of the load variation. Based on a two-degree-of-freedom (2-DOF) lateral dynamics model, a model-based Takagi-Sugeno fuzzy control strategy is applied to design such a controller and the sufficient conditions for designing such a controller are given in terms of linear matrix inequalities (LMIs) which can be solved efficiently using currently available numerical software. Numerical simulations are used to validate the effectiveness of the proposed control approach.
Technical Paper

Robust Active Roll Controller Design for Vehicles Considering Variable Speed and Actuator Delay

2007-04-16
2007-01-0825
A robust controller design method for vehicle roll control with variable speed and actuator delay is presented. Based on a three-degree-of-freedom (3DOF) yaw-roll model, the H∞ performance from the steering input to the vehicle body roll angle is considered. The design approach is formulated in terms of the feasibility of delay-dependent matrix inequalities. By combining the random search of genetic algorithms (GAs) and the efficient solution of linear matrix inequalities (LMIs), the state feedback controllers can be obtained. The approach is validated by simulations showing that the designed controllers can achieve good performance in roll control.
Technical Paper

Nonlinear Force Model of Electromagnetic Damper and Its Influence on Vibration Control

2021-04-06
2021-01-0319
In this paper, a nonlinear force model of an electromagnetic damper (EMD) is established and the model’s parameters are obtained by experiments. The effect of nonlinear force on vibration control of vehicle suspension system is analyzed by comparing the simulation data. Firstly, according to the mechanical and circuit structure of the EMD, a nonlinear model including electromagnetic force, friction force, and inertial force is established. Based on the EMD bench test, the mechanical parameters of the DC motor and the ball screw are obtained by the least square method. Then a quarter-car model including the electromagnetic suspension is established. By analyzing the transmission rate of the suspension response to the road excitation, the nonlinear force of the EMD shows an obvious influence on the high-frequency vibration performance of the suspension.
Technical Paper

Lateral Dynamics and Suspension Tuning for a Two-Axle Bus Fitted with Roll-Resistant Hydraulically Interconnected Suspension

2018-04-03
2018-01-0831
In this paper, a new roll-plane hydraulically interconnected suspension (HIS) system is proposed to enhance the roll and lateral dynamics of a two-axle bus. It is well-known that the suspension tuning is of great importance in the design process and has also been explored in a number of studies, while only minimal efforts have been made for suspension tuning for the newly proposed HIS system especially considering lateral stability. This study aims to explore lateral dynamics and suspension tuning of a two-axle bus with HIS system, which could also provide valuable information for roll dynamics analysis. Based on a ten-DOFs lumped-mass full-car model of a bus either integrating transient mechanical-hydraulic model for HIS or the traditional suspension components, three newly promoted parameters of HIS system are defined and analyzed-namely the total roll stiffness (TRS), roll stiffness distribution ratio (RSDR) and roll-plane damping (RPD).
Technical Paper

Investigation of the Influence of an Hydraulically Interconnected Suspension (HIS) on Steady-State Cornering

2017-03-28
2017-01-0430
This paper introduces a vehicle model in CarSim, and replaces a portion of its standard suspension system with an HIS model built in an external software to implement co-simulations. The maneuver we employ to characterize the HIS vehicle is a constant radius method, i.e. observing the vehicle’s steering wheel angle by fixing its cornering radius and gradually increasing its longitudinal speed. The principles of the influence of HIS systems on cornering mainly focus on two factors: lateral load transfer and roll steer effect. The concept of the front lateral load transfer occupancy ratio (FLTOR) is proposed to evaluate the proportions of lateral load transfer at front and rear axles. The relationship between toe and suspension compression is dismissed firstly to demonstrate the effects of lateral load transfer and then introduced to illustrate the effects of roll motion on cornering.
Technical Paper

Implementation and Experimental Study of a Novel Air Spring Combined with Hydraulically Interconnected Suspension to Enhance Roll Stiffness on Buses

2015-04-14
2015-01-0652
Air spring due to its superior ride comfort performance has been widely used in distance passenger transporting vehicles. Since the requirements for ride comfort and handling performance are contradict to each other, handling performance and even roll stability are sacrificed to some extent to obtain good ride comfort. Due to the complex terrain and limited manufacturing level, in the past several years, bus rollover accidents with serious casualties have been reported frequently and bus safety has attracted more and more attention from bus manufacturers in China. On one hand the bus standards have to be raised, and on the other hand, novel solutions which can effectively improve the roll stability of air spring bus are needed to replace the inadequacy of anti-roll bars.
Journal Article

H∞ Control of a Novel Low-Cost Roll-Plane Active Hydraulically Interconnected Suspension: An Experimental Investigation of Roll Control under Ground Excitation

2013-04-08
2013-01-1238
In order to make the active suspension more affordable, a novel low-cost active hydraulically interconnected suspension is developed, assembled and tested onto a sport utility vehicle. H∞ roll control strategy is employed to control vehicle body's roll motion. The hydraulic suspension model used for deriving the H∞ controller is estimated experimentally from the testing data. The active suspension model is then combined with the half-car model through their mechanical-hydraulic interface in the cylinders. The weighting function design of the H∞ control is provided. On a 4-post-test rig, the active suspension with H∞ control is validated with several road excitations. The test rig and experimental setup are explained and the obtained results are compared. The effectiveness of the designed H∞ controller is verified by the test data, with a considerable roll angle reduction in the three tests presented.
Journal Article

Handling Analysis of a Vehicle Fitted with Roll-Plane Hydraulically Interconnected Suspension Using Motion-Mode Energy Method

2014-04-01
2014-01-0110
This paper employs the motion-mode energy method (MEM) to investigate the effects of a roll-plane hydraulically interconnected suspension (HIS) system on vehicle body-wheel motion-mode energy distribution. A roll-plane HIS system can directly provide stiffness and damping to vehicle roll motion-mode, in addition to spring and shock absorbers in each wheel station. A four degree-of-freedom (DOF) roll-plane half-car model is employed for this study, which contains four body-wheel motion-modes, including body bounce mode, body roll mode, wheel bounce mode and wheel roll mode. For a half-car model, its dynamic energy contained in the relative motions between its body and wheels is a sum of the energy of these four motion-modes. Numerical examples and full-car experiments are used to illustrate the concept of the effects of HIS on motion-mode energy distribution.
Journal Article

Experimental Investigation of a Hydraulically Interconnected Suspension in Vehicle Dynamics and Stability Control

2012-04-16
2012-01-0240
Mainly motivated by developing cost-effective vehicle anti-roll systems, hydraulically interconnected suspension has been studied in the past decade to replace anti-roll bars. It has been proved theoretically and practically that hydraulic suspensions have superior anti-roll ability over anti-roll bars, and therefore they have achieved commercial success in racing cars and luxury sports utility vehicles (SUVs). However, since vehicle is a highly coupled complex system, it is necessary to investigate/evaluate the hydraulic-suspension-fitted-vehicle's dynamic performance in other aspects, apart from anti-roll ability, such as ride comfort, lateral stability, etc. This paper presents an experimental investigation of a SUV fitted with a hydraulically interconnected suspension under a severe steady steering maneuver; the result is compared with a same type vehicle fitted with anti-roll bars.
Technical Paper

Experimental Investigation of Interconnected Hydraulic Suspensions with Different Configurations to Soften Warp Mode for Improving Off-Road Vehicle Trafficability

2015-04-14
2015-01-0658
Hydraulic suspension systems with different interconnected configurations can decouple suspension mode and improve performance of a particular mode. In this paper, two types of interconnected suspensions are compared for off-road vehicle trafficability. Traditionally, anti-roll bar, a mechanically interconnected suspension system, connecting left and right suspension, decouples roll mode from the bounce mode and results in a stiff roll mode and a soft bounce mode, which is desired. However, anti-roll bars fail to connect the front wheel motions with the rear wheels', thus the wheels' motions in the warp mode are affected by anti-roll bars and it results an undesired stiffened warp mode. A stiffened warp mode limits the wheel-ground contact and may cause one wheel lift up especially during off-road drive. In contrast with anti-roll bars, two types of hydraulic suspensions which interconnect four wheels (for two-axis vehicles) can further decouple articulation mode from other modes.
Technical Paper

Dynamic Modelling and Simulation of a New Spring-Based Synchronizer for Electric Vehicle

2021-04-06
2021-01-0321
Compared to the widely used single-speed transmission in electric vehicles (EVs), the two-speed transmission can improve both the dynamic performance and driving efficiency. This paper investigates the new spring-based synchronizer used in two-speed automated manual transmission (AMT). Compared with the traditional synchronizer which uses friction torque to implement the synchronization process, the proposed synchronizer uses torque spring to provide torque to synchronize the speed between target gear and shaft, which reduces the wear caused by friction and decreases the shifting time. To comprehensively study the performance of the new spring-based synchronizer, its dynamic model is built in AMESim software. The shifting time and contact torque are analyzed through simulating the dynamic model, which demonstrates that the new synchronizer can reduce the shifting time and contact torque compared to the traditional friction-based synchronizer.
Technical Paper

Dynamic Characteristics Analysis of an Ambulance with Hydraulically Interconnected Suspension System

2018-04-03
2018-01-0815
The vibration and instability experienced in an ambulance can lead to secondary injury to a patient and discourage a paramedic from emergency care. This paper presents a hydraulically interconnected suspension (HIS) system which can achieve enhanced cooperative control of roll, pitch and bounce motion modes to improve the ambulance's ride comfort and handling performance. A lumped-mass model integrated with a mechanical and hydraulic coupled system is developed by using free-body diagram and transfer matrix methods. The mechanical-fluid boundary condition in the double-acting cylinders is modelled as an external force on the mechanical system and a moving boundary on the fluid system. A special modal analysis method is employed to reveal the vibration characteristics of the ambulance with the HIS.
Journal Article

Development of A New Model for Roll-Plane Active Hydraulically Interconnected Suspension

2014-04-01
2014-01-0053
In this paper, a more sophisticated mathematical linear model for a roll-plane active hydraulically interconnected suspension (HIS) system was developed. Model parameters tuning were then carried out, which resulted in a model that is capable of producing rather accurate estimation of the system, with significant improvements over models built previously. For the verification of the new model, two simulations and corresponding experiments are conducted. Data comparisons between the simulations and experiments show high consistent responses of the model and the real system, which validated the robustness and accuracy of the new mathematical model. In this process, the characteristics of the pressure response and the rise time inside the actuators have been revealed due to the presence of the flow.
Technical Paper

Design and Dynamic Analysis of Bounce and Pitch Plane Hydraulically Interconnected Suspension for Mining Vehicle to Improve Ride Comfort and Pitching Stiffness

2015-04-14
2015-01-0617
This paper demonstrates time response analysis of the mining vehicle with bounce and pitch plane hydraulically interconnected suspension (HIS) system. Since the mining vehicles working in harsh conditions inducing obvious pitch motion and the hard stiffness of suspensions leading to the acute vibration, the passive hydraulically interconnected system is proposed to provide better ride comfort. Furthermore, the hydraulic system also increases the suspension stiffness in the pitch mode to prevent vehicle from large pitch motions. According to the hydraulic and mechanical coupled characteristic of the mining vehicles, a 7degrees of freedom (7-DOFS) mathematical model is employed and the state space method is used to establish the mechanical and hydraulic coupled dynamic equations. In this paper, the vehicles are subjected to straight line braking input, triangle block bump input applied to the wheels and random road tests.
X