Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 25184
Technical Paper

“Wireless Communications for Vehicle Safety:Radio Link Performance & Wireless Connectivity Methods”

2006-10-16
2006-21-0030
Many accidents occur today when distant objects or roadway impediments are not quickly detected. To help avoid these accidents, longer-range safety systems are needed with real-time detection capability and without requiring a line-of-sight (LOS) view by the driver or sensor. Early detection at intersections is required for obstacle location around blind corners and dynamic awareness of approaching vehicles on intersecting roadways. Many of today's vehicular safety systems require short LOS distances to be effective. Such systems include forward collision warning, adaptive cruise control, and lane keeping assistance. To operate over longer LOS distances and in Non-LOS (NLOS) conditions, cooperative wireless communications systems are being considered. This paper describes field results for LOS and NLOS radio links for one candidate wireless system: 5.9GHz Dedicated Short Range Communications (DSRC).
Technical Paper

“U” Bolt Torque Influence over Leaf Springs

2014-05-07
2014-36-0024
”U” bolts are fixing elements and they are used to clamp an elastic joint. From the past, they still looking as an old design and unfortunately, suspension engineers are not specialists in fasteners and elastic joints. That is why we will show important assumptions and concepts to design and specifications this clamp element “U” bolt and its influence over leaf-springs. Currently, “U” bolt is used to clamp an elastic or elastic-plastic joint of heavy duty suspension, formed by leaf-spring, axle, spring pad, “U” bolt plate. This kind of suspension is typically used to trucks, buses and trailers. We are wondering, which one important assumption that an engineer must be careful when designs a new suspension changing from old designs to an updated technology. We provide a theoretical analysis and a FEA analysis to compare torque efficacy x leaf-spring reactions and what are effects this relationship can cause in a suspension.
Technical Paper

“The Turbo-Chief” - San Francisco Fire Department's Gas Turbine Powered Fire Apparatus

1965-02-01
650462
For the past four years the San Francisco Fire Department has owned and operated an American La France Triple Combination Engine Company powered with a Boeing Model 502 gas turbine engine. This engine company, in first line fire service, has illustrated the practicability of the gas turbine in vehicular applications. The purpose of this paper is to outline the experience gained by the use of a gas turbine engine in such an installation.
Technical Paper

“The Accuracy of Speed Captured by Commercial Vehicle Event Data Recorders”

2004-03-08
2004-01-1199
Many newer commercial vehicles have an event data recorder (EDR) that can record pre-event and post-event speeds. The EDR is incorporated into the engines electronic control module (ECM). In this study, the accuracy of the ECM-reported speed was tested during acceleration, gear shifting and braking at speeds between 16 and 88 km/h (10 to 55mph). The ECM-reported speed was compared to the speed measured by a calibrated optical 5th wheel. The results showed that the accuracy of the ECM-reported speed matched closely during acceleration, cycled to periods of under-reporting the speed during hard braking due to the ABS brake function, briefly under-reporting the speed after letting off the throttle for braking or gear shift and briefly over-reporting the speed near the end of a gear shift phase. This study also looked at calibration factors of the ECM and their effect on the ECM-reported speed.
Technical Paper

“Seat Belt Sweepstakes” - An Incentive Program

1983-02-01
830474
As part of an overall effort to support the National Highway Traffic Safety Administration's (NHTSA) national program to increase seat belt usage, General Motors instituted an employe seat belt use incentive program at the General Motors Technical Center in Warren, Michigan. This program was responsible for raising seat belt use at the Tech Center from 36% to 70% during its 5 1/2 month duration. The program was patterned, in part, after research work done by professor E. Scott Geller of the Virginia Polytechnic Institute and State University under a grant from the General Motors Research Laboratories and a program conducted by Berg Electronics (a DuPont subsidiary). The intent of the program was to provide sufficient positive incentive to employes to buckle up for an extended period of time, thereby establishing a seat belt use habit that will continue after the incentives are no longer offered.
Technical Paper

“Pedestrian in the Loop”: An Approach Using Augmented Reality

2018-04-03
2018-01-1053
A large number of testing procedures have been developed to ensure vehicle safety in common and extreme driving situations. However, these conventional testing procedures are insufficient for testing autonomous vehicles. They have to handle unexpected scenarios with the same or less risk a human driver would take. Currently, safety related systems are not adequately tested, e.g. in collision avoidance scenarios with pedestrians. Examples are the change of pedestrian behaviour caused by interaction, environmental influences and personal aspects, which cannot be tested in real environments. It is proposed to use augmented reality techniques. This method can be seen as a new (Augmented) Pedestrian in the Loop testing procedure.
Technical Paper

“One-Side Aluminized Steel Sheet” Development and Properties of a New Anti-Corrosion Material

1983-02-01
830519
Nisshin Steel Co., Ltd. has developed a new process for the production of a “one-side aluminized steel sheet”. The process utilizes a double layer one-side “stop-off” coating to prevent the molten Al from adhering to the steel surface. The “Stop-off” coating is removed by simple mechanical brushing after hot dipping. The characteristics of this product by above mentioned process are: 1) The steel side was as clean as a conventional cold rolled surface and showed no trace of the “stop-off” layer. Thereby, phosphating and ED painting were performed. 2) In the salt spray test data was obtained from zinc and Al coated steel surfaces; the coatings on both surfaces being of equal thickness.
Technical Paper

“Next Generation” Means for Detecting Squeaks and Rattles in Instrument Panels

1997-05-20
972061
Engineers doing squeak and rattle testing of instrument panels (IP's) have successfully used large electrodynamic vibration systems to identify sources of squeaks and rattles (S&R's). Their successes led to demands to test more IP's, i.e., to increase throughput of IP's to reflect the many design, material, and/or manufacturing process changes that occur, and to do so at any stage of the development, production, or QA process. What is needed is a radically different and portable way to find S&R's in a fraction of the time and at lower capital cost without compromising S&R detection results.
Technical Paper

“Motion in FEA”: An Innovative Approach for More Physical and More Accurate Vehicle Dynamics Simulation

2012-04-16
2012-01-0762
Vehicle dynamics is a discipline of mechanical engineering that benefited of significant improvements thanks to the progress of computational engineering. Vehicle dynamics engineers are using CAE for the development of a vehicle with MBS and FEA. The concurrent use of these two technologies is a standard in the automotive industry. However the current simulation process is not fully efficient because local geometrical and material nonlinearities are not accurately modeled in classical MBS software. This paper introduces a methodology for vehicle dynamics simulation integrating MBS capabilities in one single nonlinear FEA environment enabling an accurate modeling of nonlinearity in vehicles.
Technical Paper

“Metallic Core Technology”…and the Production of One Piece, Hollow Composite Components Which Have Complex Internal Geometry

1992-02-01
920507
Engineers have long been restricted in designing and manufacturing one piece, hollow composite components with complex internal geometry. Complex core pulls in the plastic tool, major concessions made in the actual component design or components joined from several pieces were the early means of producing such components. Progressive thinking led to the use of matrix materials such as sand, salt and wax, which provided a measure of flexibility in allowing designed-in undercut areas. These materials, however, lacked the capability to meet the required demands of dimensional accuracy and internal surface, as well as proving themselves unsuitable for high volume production. The concerns for repetitive dimensional accuracy, quality internal surface and high volume production capability has now been satisfied with the use of low melting temperature metal alloys.
Technical Paper

“Mechanical Brake Assist - A Potential New Standard Safety Feature”

1999-03-01
1999-01-0480
This paper presents an innovative brake booster which permits the brake assist function of the electric brake assist system to be implemented with mechanical means. The resultant significant reduction of manufacturing costs enhances the chances for a wide-spread use of this feature in all vehicle classes, thereby making an important contribution to the general improvement of traffic safety. Based on an analysis of the mechanically detectable physical variables for recognizing a panic situation and an evaluation of possible methods of mechanical valve activation, the paper presents a mass production solution and describes its functional properties. In particular, it should be noted that the possibility of controlling the braking pressure within the brake assist function even represents a functional advantage
Technical Paper

“Jet Air” Compressor Control System

1971-02-01
710203
This paper describes the interrelated controls for automatic start sequencing, fuel scheduling, customer air delivery, and supervisory and protective systems as applied to the Curtiss-Wright CW657E “Jet-Air” Compressor. Model CW657E is capable of delivering 15,000 SCFM air at 85 psig (at 30°F and sea level pressure) and may be used in a diversity of manufacturing, processing, and industrial applications. A description of the control system and its operation in relation to compressor requirements, while furnishing air to feed distribution lines to air assisted water atomizing nozzles for snow making is reviewed as an example. Other models can deliver up to 30,000 SCFM with modified control systems, including pressure controls.
Technical Paper

“Herschel-Quincke Spiral” A New Interference Silencer

2003-05-05
2003-01-1722
Over the last ten years there has been a steady growth in the market share of light-duty diesel engines, especially in Europe. At the same time, a general trend in petrol engine development has been seen, in which normal aspirated engines are being replaced by downsized turbocharged engines. Therefore, NVH engineers have to deal with new challenges. Turbochargers produce an aerodynamic noise in the frequency range above 1000Hz, which might influence the exterior and interior noise level. As a result, the additional requirement for acoustical components to reduce this flow noise is going to pose an increasing challenge for air intake system suppliers. This paper describes a new design of well-known wide band silencer first mentioned by A. Selamet, N.S.Dickey and J.M.Novak [1,2]. The silencer works according to the interference principle. The sound is guided into two or more parallel pipes of different lengths.
Technical Paper

“Geometric Dimensioning and Tolerancing”

1968-02-01
680488
Geometric dimensioning and tolerancing is both a “language” and a “technique.” Its objective is to facilitate design, production, and inspection and, simultaneously, provide the most economic results. This paper describes the implementation and practice to accomplish these through illustrating methods to state design requirements specifically and clearly and to provide for maximum producibility, uniformity of interpretation, etc. The need to reflect a common objective for design, production, and inspection via the stated drawing requirement is emphasized. Application and interpretation of geometric characteristics (emphasizing symbology), fundamentals, rules, etc. are presented. Basis for the content of this paper is USASI Y14.5-1966 “Dimensioning and Tolerancing for Engineering Drawings.”
Technical Paper

“Ease of Driving” Road Classification for Night-time Driving Conditions

2016-04-05
2016-01-0119
This paper is an extension of our previous work on the CHASE (Classification by Holistic Analysis of Scene Environment) algorithm, that automatically classifies the driving complexity of a road scene image during day-time conditions and assigns it an ‘Ease of Driving’ (EoD) score. At night, apart from traffic variations and road type conditions, illumination changes are a major predominant factor that affect the road visibility and the driving easiness. In order to resolve the problem of analyzing the driving complexity of roads at night, a brightness detection module is incorporated in our end-to-end nighttime EoD system, which computes the ‘brightness factor’ (bright or dark) for that given night-time road scene. The brightness factor along with a multi-level machine learning classifier is then used to classify the EoD score for a night-time road scene. Our end-to-end ‘Night-time EoD system’ is a real-time onboard system implemented and tested on road scene data collected in Japan.
Technical Paper

“Cromard” Thin Wall Steel Liners and Hard Chrome Plated Liners for High Production Gasoline and Diesel Engines

1964-01-01
640361
This paper, confined to the application of hard chrome plated liners to high-speed four-stroke diesel and gasoline engines, illustrates the increase in their popularity in the United Kingdom, and the advanced production methods which make this economically possible. The need for balanced engine life has long been apparent and is even more important today, the growth of motor transport having outstripped repair facilities. Iron bore life has been surpassed by improvement in the life of other component parts in the modern diesel engine. The provision of hard chrome plated liners can restore the balance. Further development and turbocharging of diesel engines has shown the need for a bore material capable of preventing scuffing and galling at elevated temperatures. Hard chrome has already proved itself in four-stroke engines under these conditions.
Technical Paper

“Consumer Attitudes and Perceptions about Safety and Their Preferences and Willingness to Pay for Safety”

2010-10-19
2010-01-2336
The U.S. National Highway Transportation and Safety Agency's (NHTSA) early estimates of Motor Traffic Fatalities in 2009 in the United States [1] show continuing progress on improving traffic safety on the U.S. roadways. The number of total fatalities and the fatality rate per 100 Million Vehicle Miles (MVM), both show continuing declines. In the 10 year period from 1999 through 2009, the total fatalities have dropped from 41,611 to 33,963 and the fatality rate has dropped from 1.5 fatalities per 100MVM to 1.16 fatalities per 100MVM, a compound annual drop of 2.01% and 2.54% respectively. The large number of traffic fatalities, and the slowing down of the fatality rate decline, compared to the decade before, continues to remain a cause of concern for regulators.
X