Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

100 Years of Corrosion Testing—Is It Time to Move beyond the ASTM D130? The Wire Corrosion and Conductive Deposit Tests

2023-09-22
Abstract The ASTM D130 was first issued in 1922 as a tentative standard for the detection of corrosive sulfur in gasoline. A clean copper strip was immersed in a sample of gasoline for three hours at 50°C with any corrosion or discoloration taken to indicate the presence of corrosive sulfur. Since that time, the method has undergone many revisions and has been applied to many petroleum products. Today, the ASTM D130 standard is the leading method used to determine the corrosiveness of various fuels, lubricants, and other hydrocarbon-based solutions to copper. The end-of-test strips are ranked using the ASTM Copper Strip Corrosion Standard Adjunct, a colored reproduction of copper strips characteristic of various degrees of sulfur-induced tarnish and corrosion, first introduced in 1954. This pragmatic approach to assessing potential corrosion concerns with copper hardware has served various industries well for a century.
Technical Paper

1985 Body Corrosion Field Survey - 5 and 6 Year Old Vehicles

1986-12-08
862025
The Body Division of the Automotive Corrosion and Prevention Committee of SAE (ACAP) concluded that an automotive body corrosion survey for public consumption was needed. The committee proceeded to develop a survey methodology and conducted an initial survey in the Detroit area. Similar surveys can be conducted at regular biyearly intervals for comparison to track the results of industry wide improvements in corrosion protection. Over two hundred 1980 and 1981 model year vehicles were surveyed covering a wide range of domestic models and some foreign models. Twenty six panel or partial panel categories were developed and evaluated for a closed car parking lot survey. Each panel was checked for perforation, blistering and surface rust.
Technical Paper

1D Fluid Dynamic Modeling of Unsteady Reacting Flows in the Exhaust System with Catalytic Converter for S.I. Engines

2000-03-06
2000-01-0210
This paper deals with some recent advances in the field of 1D fluid dynamic modeling of unsteady reacting flows in complex s.i. engine pipe-systems, involving a catalytic converter. In particular, a numerical simulation code has been developed to allow the simulation of chemical reactions occurring in the catalyst, in order to predict the chemical specie concentration in the exhaust gas from the cylinder to the tailpipe outlet, passing through the catalytic converter. The composition of the exhaust gas, discharged by the cylinder and then flowing towards the converter, is calculated by means of a thermodynamic two-zone combustion model, including emission sub-models. The catalytic converter can be simulated by means of a 1D fluid dynamic and chemical approach, considering the laminar flow in each tiny channel of the substrate.
Technical Paper

1D Model of a Copper Exchanged Small Pore Zeolite Catalyst Based on Transient SCR Protocol

2013-04-08
2013-01-1578
Urea-selective catalytic reduction (SCR) catalysts are the leading aftertreatment technology for diesel engines, but there are major challenges associated with meeting future NOx emission standards, especially under transient drive cycle conditions that include large swings in exhaust temperatures. Here we present a simplified, transient, one-dimensional integral model of NOx reduction by NH₃ on a commercial small-pore Cu-zeolite urea-SCR catalyst for which detailed kinetic parameters have not been published. The model was developed and validated using data acquired from bench reactor experiments on a monolith core, following a transient SCR reactor protocol. The protocol incorporates NH₃ storage, NH₃ oxidation, NO oxidation and three global SCR reactions under isothermal conditions, at three space velocities and at three NH₃/NOx ratios.
Technical Paper

1D Unsteady Flows with Chemical Reactions in the Exhaust Duct-System of S.I. Engines: Predictions and Experiments

2001-03-05
2001-01-0939
This paper describes some recent advances of the research work concerning the 1D fluid dynamic modeling of unsteady reacting flows in s.i. engine pipe-systems, including pre-catalysts and main catalysts. The numerical model GASDYN developed in previous work has been further enhanced to enable the simulation of the catalyst. The main chemical reactions occurring in the wash-coat have been accounted in the model, considering the mass transfer between gas and solid phase. The oxidation of CO, C3H6, C3H8, H2 and reduction of NO, the steam-reforming reactions of C3H6, C3H8, the water-gas shift reaction of CO have been considered. Moreover, an oxygen-storage sub-model has been introduced, to account for the behavior of Cerium oxides. A detailed thermal model of the converter takes into account the heat released by the exothermic reactions as a source term in the heat transfer equations. The influence of the insulating mat is accounted.
Technical Paper

2005 Fuel Cell Vehicle and its Magnesium Power Distribution Unit

2005-04-11
2005-01-0339
The High Voltage Power Distribution Unit (PDU) is constructed of magnesium in support of Fuel Cell Electric Vehicle (FCEV) weight reduction efforts. The PDU distributes and controls a nominal 75 kilowatts of power generated by the Fuel Cell, the primary source of High Voltage power, to all the vehicle loads and accessories. The constraints imposed on the design of the PDU resulted in a component highly susceptible to general and galvanic corrosion. Corrosion abatement was the focus of the PDU redesign. This paper describes the redesign efforts undertaken by Ford personnel to improve the part robustness and corrosion resistance.
Technical Paper

2022-Global Kinetic Modeling of a Commercial DOC Based on a Reduced Synthetic Gas Bench Protocol

2022-03-29
2022-01-0558
Various techniques are constantly being devised to accelerate model generation leading to shorter product development cycle. This work proposes and implements a reduced synthetic gas bench (SGB) test protocol for a commercial Pt-Pd diesel oxidation catalyst (DOC) that can be used to develop global reaction kinetics. The kinetics thus developed were implemented in a 1D model to predict DOC emissions accurately over a wide operating window. Hydrocarbons (HCs) in the exhaust were categorized as Propylene (C3H6) representing partially oxidized hydrocarbons and n-Decane (C10H22) representing unburnt fuel. Test protocols were defined using the order of inhibition of the various species present in the exhaust, namely, CO, NOx (NO+NO2) and HC for the specific reaction under consideration. The oxidation reactions for CO and HCs were found to be inhibited competitively by CO and HCs; both the NOx species inhibited these reactions to the same extent.
Technical Paper

4300°F Thermocouples for Re-entry Vehicle Applications – Part I

1963-01-01
630359
This paper discusses work performed in research, design, and development of sensors for measurement of local dynamic surface temperatures on re-entry vehicles. Included are discussions of the basic requirements and related system design factors, the transducer concepts and sensor assembly configurations considered, and the materials investigations and engineering tests conducted. Design requirements are presented for the twin-lead thermocouple probe temperature sensor chosen as the most feasible concept for early implementation. The most promising thermocouple materials and fabrication processes are defined and the additional precision testing and development requirements for final design are outlined. Information not previously reported in available literature includes preliminary data from tests up to4300°F showing (1) excellent oxidation resistance of Iridium, and (2) oxidation protection of thermocouple elements in “gas tight” sheaths of thoria and zirconia.
Technical Paper

700 H.P. TRUCK TRANSPORT

1967-02-01
670700
SIGNIFICANT REDUCTION IN THE TRANSPORTATION COST PER TON MILE OF BULK PRODUCTS IS ATTAINABLE BY THE PROPER ADAPTATION OF A TRUCK TRAIN TRANSPORT. IMPROVED HAUL ROADS, GREATER DISTANCES, AND INCREASED DEMAND FOR MINE PRODUCTS AT COMPETITIVE PRICES ARE RESULTING IN A RE-EVALUATION OF ALL COST ASPECTS OF MATERIAL MOVEMENT. THE TRUCK TRAIN CONCEPT USING RELATIVELY SMALLER TIRES THAN LARGE PIT TRUCKS OPENS THE DOOR TO REDUCED OPERATING COSTS BY LOWERING CYCLE TIMES AND COST PER MILE OF TIRES AND CAPITAL INVESTMENT.
Technical Paper

A 2-D Computational Model Describing the Heat Transfer, Reaction Kinetics and Regeneration Characteristics of a Ceramic Diesel Particulate Trap

1998-02-23
980546
A 2-D CFD model was developed to describe the heat transfer, and reaction kinetics in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state as well as the transient behavior of the flow and heat transfer during the trap regeneration processes. The trap temperature profile was determined by numerically solving the 2-D unsteady energy equation including the convective, heat conduction and viscous dissipation terms. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations (Opris, 1997). The reaction kinetics were described using a discretized first order Arrhenius function. The 2-D term describing the reaction kinetics and particulate matter conservation of mass was added to the energy equation as a source term in order to represent the particulate matter oxidation. The filtration model describes the particulate matter accumulation in the trap.
Technical Paper

A Beginning Toward Understanding the Corrosion Resistance of Ferritic Stainless Steels

1993-03-01
930450
To date the market for P/M stainless steel has not developed appreciably, and has centered largely on the development of austenitic 300 series stainless steels. Although these stainless steels are noted for their resistance to corrosion in many media, it has been difficult for P/M parts fabricators to produce parts that will sustain 1,000 hours of protection in a 5% salt solution. The problem starts with the water atomized powders and continues with the sintering practice exercised to produce the parts. Reasons for lack of corrosion resistance, based upon these considerations, will be discussed. In addition, the ferritic stainless steels are being considered seriously for fuel injectors. These emerging applications derive from the corrosive environment that may become a problem if and when alternative fuels are introduced. P/M ferritic stainless steels may also assume a position as a corrosion resistant magnetic material required in ABS systems which are currently emerging.
Technical Paper

A Bench Technique for Evaluating High Temperature Oxidation and Corrosion Tendencies of Automotive Crankcase Lubricants

1968-02-01
680538
A technique for evaluating high temperature oxidation and corrosion tendencies of automotive crankcase lubricants is described. The technique utilizes a versatile bench apparatus which, with a minimum of modification, can be used for either evaluating thermal oxidation stability of gear lubricants or oxidation-corrosion tendencies of automotive crankcase lubricants. The apparatus is relatively compact and requires a minimal lubricant sample. Design of the apparatus permits close control of all operating parameters and provides satisfactory test data repeatability. Retainable copper-lead test bearings are used as the indicator in predicting a pass or fail of fully formulated crankcase lubricants as in the case of the CRC L-38-559 (Federal Test Method 3405) technique. Engine and bench test data are compared to illustrate the capabilities of this new bench technique.
Technical Paper

A Bench Technique for Evaluating the Induction System Deposit Tendencies of Motor Gasolines

1966-02-01
660783
A technique for determining induction system deposit (ISD) tendencies of a gasoline is described. The technique uses a bench apparatus, designed to simulate the valve and port area of an engine intake system, which provides deposit data correlative to real engines. The apparatus is compact, requires a minimal fuel sample, uses a retainable metal tube as the deposit collecting surface, and has good repeatability. Design of the equipment eliminates the possibility of deposit contamination by dirt, rust and lead precipitate, and both solvent-washed and unwashed data may be obtained. ASTM Gum, engine intake deposit weights, and ISD technique data are compared to illustrate the capabilities of this new technique.
Technical Paper

A Bench Test Procedure for Evaluating the Cylinder Liner Pitting Protection Performance of Engine Coolant Additives for Heavy Duty Diesel Engine Applications

1996-02-01
960879
Evaluations of the liner pitting protection performance provided by engine coolant corrosion inhibitors and supplemental coolant additives have presented many problems. Current practice involves the use of full scale engine tests to show that engine coolant inhibitors provide sufficient liner pitting protection. These are too time-consuming and expensive to use as the basis for industry-wide specifications. Ultrasonic vibratory test rigs have been used for screening purposes in individual labs, but these have suffered from poor reproducibility and insufficient additive differentiation. A new test procedure has been developed that reduces these problems. The new procedure compares candidate formulations against a good and bad reference fluid to reduce the concern for problems with calibration and equipment variability. Cast iron test coupons with well-defined microstructure and processing requirements significantly reduce test variability.
Technical Paper

A Billion Engine Hours On Aluminum Bearings

1956-01-01
560058
HIGH load-carrying ability and fatigue strength, good embeddabiltty and conformability, and resistance to wear, seizure, and corrosion are factors that sold them on aluminum for bearings, the authors report. Bonded steel backing, they say, makes aluminum bearings even better. Retaining aluminum's good properties, it improves some of its bad points and gives such advantages as: Reduced bearing clearances, compared with those used with solid-aluminum bearings. No life limit in operation below 5000 psi fatigue stress value. Less sensitivity to high oil temperatures. Negligible wear (after 29,000 hr in one test). Simpler and less expensive bearing-locating designs. Special excellence for high-load, high-speed applications.
Technical Paper

A Catalytic Oxidation Sensor for the On Board Detection of Misfire and Catalyst Efficiency

1992-10-01
922248
This paper describes a novel catalytic oxidation sensor which represents an attempt to realise a practical sensor for on vehicle detection of catalyst efficiency and misfire. Via experimental and modelling approaches, promising characteristics are established, which could mean that an application to the on-vehicle detection of catalyst efficiency and misfire is feasible.
Technical Paper

A Comparative Analysis on Corrosion Behavior on Precipitation Hardened Stainless Steel Weldments for Car Parts

2023-11-10
2023-28-0149
Precipitation Hardened Stainless Steel (PHSS) is one of the martensitic steels that possess exceptional strength and corrosion resistance. Because of its characteristics, this PHSS is exclusively adopted in numerous engineering uses such as nuclear, chemical and marine industries. Welding is one of the important methods of joining that helps to make weldments with better performance characteristics. Corrosion behaviour is one of the important characteristics that contribute hugely to marine and other corrosion-related environments and also this is the most common problem for most of the manufacturing industries. The goal of this study was to analyze the PHSS weldments’ corrosive behavior and compare it with that of the two commonly used welding processes, namely MIG and TIG. The corrosive properties of the weldments were evaluated using various mediums, such as nitric acid, ferric chloride, and Oxalic acid.
Technical Paper

A Comparative Study Between Salt Bath and Plasma Nitrocarburizing Processes for Application in Piston Rods

2000-12-01
2000-01-3175
The quality of the nitrocarburized layer has a decisive influence in the service life of components with pistons that work together with polymeric seals, since it interferes in the abrasion and wear mechanisms of the involved materials. Thus it is necessary to select the most adequate process to apply in a given component aiming for a quality improvement and warranty costs reduction. The literature offers a great volume of information about the different nitriding processes, but there are few reports comparing them. In this paper the salt bath and plasma processes are discussed concerning the white layer metallography, roughness and the process effect on corrosion resistance of gas spring rods manufactured with SAE 1040 steel.
Technical Paper

A Comparative Study of New Magnesium Alloys Developed for Elevated Temperature Applications in Automotive Industry

2003-03-03
2003-01-0191
Recently several new magnesium alloys for high temperature applications have been developed with the aim to obtain an optimal combination of die castability, creep resistance, mechanical properties, corrosion performance and affordable cost. Unfortunately, it is very difficult to achieve an adequate combination of properties and in fact, most of the new alloys can only partially meet the required performance and cost. This paper aims at evaluating the current status of the newly developed alloys for powertrain applications. The paper also addresses the complexity of magnesium alloy development and illustrates the effect of alloying elements on properties and cost. In addition, the paper presents an attempt to set the position of each alloy in the integrated space of combined properties and cost
Technical Paper

A Comparison of Corrosion Test Methods for Painted Galvanized Steel

1982-02-01
820427
Various galvanized steels, ZINCROMETAL and cold-rolled steel were painted with automotive-type paints and tested via accelerated, atmospheric and on-vehicle tests. Tests indicate that the ASTM B117 salt fog test and the Kesternich SO2 test do not yield results which are indicative of automotive, in-service corrosion performance. A modified Volvo scab corrosion test was found to offer an accelerated method to accurately predict automotive, in-service corrosion performance. Galvanized steels exhibited corrosion resistance which was far superior to ZINCROMETAL and cold-rolled steel. Thicker zinc coatings on steel were found to offer better corrosion protection to painted substrates.
X