Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 11436
Journal Article

“Sticky” Lining – the Phenomena, Mechanism and Prevention

2008-04-14
2008-01-0819
An unique bonding mechanism was studied after several instances, where the linings stuck to the brake drums on transit buses, were reported. Evidences suggested that the linings were “glued” to the brake drums surface after wear debris (dust) was turned into “adhesive paste” through complicated thermal and chemical changes. Factors such as the friction materials, environment and service conditions, which could activate and deactivate the lining bonding, were observed and discussed. The prevention measures are proposed.
Technical Paper

“Smart sensing” of Oil Degradation and Oil Level Measurements in Gasoline Engines

2000-03-06
2000-01-1366
Proper lubrication of moving parts is a critical factor in internal combustion engine performance and longevity. Determination of ideal lubricant change intervals is a prerequisite to ensuring maximum engine efficiency and useful life. When oil change intervals are pushed too far, increased engine wear and even engine damage can result. On the other hand, premature oil changes are inconvenient, add to vehicle maintenance cost, and result in wasted natural resources. In order to determine the appropriate oil change interval, we have developed an oil condition sensor that measures the electrical properties of engine oil, and correlates these electrical properties to the physical and chemical properties of oil. This paper provides a brief background discussion of the oil degradation process, followed by a description of the sensor operational principles and the correlation of the sensor output with physical and chemical engine oil properties.
Technical Paper

“Projection-by-Projection” Approach: A Spectral Method for Multiaxial Random Fatigue

2014-04-01
2014-01-0924
This paper presents a fatigue criterion based on stress invariants for the frequency-based analysis of multiaxial random stresses. The criterion, named “Projection-by-Projection” (PbP) spectral method, is a frequency-based reformulation of its time-domain definition. In the time domain PbP method, a random stress path is first projected along the axes of a principal reference frame in the deviatoric space, thus defining a set of uniaxial random stress projections. In the frequency-domain approach, the damage of stress projections is estimated from the stress PSD matrix. Fatigue damage of the multiaxial stress is next calculated by summing up the fatigue damage of every stress projection. The criterion is calibrated on fatigue strength properties for axial and torsion loading. The calculated damage is shown to also depend on the relative ratio of hydrostatic to deviatoric stress components.
Technical Paper

“One-Side Aluminized Steel Sheet” Development and Properties of a New Anti-Corrosion Material

1983-02-01
830519
Nisshin Steel Co., Ltd. has developed a new process for the production of a “one-side aluminized steel sheet”. The process utilizes a double layer one-side “stop-off” coating to prevent the molten Al from adhering to the steel surface. The “Stop-off” coating is removed by simple mechanical brushing after hot dipping. The characteristics of this product by above mentioned process are: 1) The steel side was as clean as a conventional cold rolled surface and showed no trace of the “stop-off” layer. Thereby, phosphating and ED painting were performed. 2) In the salt spray test data was obtained from zinc and Al coated steel surfaces; the coatings on both surfaces being of equal thickness.
Technical Paper

“Next Generation” Means for Detecting Squeaks and Rattles in Instrument Panels

1997-05-20
972061
Engineers doing squeak and rattle testing of instrument panels (IP's) have successfully used large electrodynamic vibration systems to identify sources of squeaks and rattles (S&R's). Their successes led to demands to test more IP's, i.e., to increase throughput of IP's to reflect the many design, material, and/or manufacturing process changes that occur, and to do so at any stage of the development, production, or QA process. What is needed is a radically different and portable way to find S&R's in a fraction of the time and at lower capital cost without compromising S&R detection results.
Technical Paper

“Metallic Core Technology”…and the Production of One Piece, Hollow Composite Components Which Have Complex Internal Geometry

1992-02-01
920507
Engineers have long been restricted in designing and manufacturing one piece, hollow composite components with complex internal geometry. Complex core pulls in the plastic tool, major concessions made in the actual component design or components joined from several pieces were the early means of producing such components. Progressive thinking led to the use of matrix materials such as sand, salt and wax, which provided a measure of flexibility in allowing designed-in undercut areas. These materials, however, lacked the capability to meet the required demands of dimensional accuracy and internal surface, as well as proving themselves unsuitable for high volume production. The concerns for repetitive dimensional accuracy, quality internal surface and high volume production capability has now been satisfied with the use of low melting temperature metal alloys.
Technical Paper

“Mechanical Brake Assist - A Potential New Standard Safety Feature”

1999-03-01
1999-01-0480
This paper presents an innovative brake booster which permits the brake assist function of the electric brake assist system to be implemented with mechanical means. The resultant significant reduction of manufacturing costs enhances the chances for a wide-spread use of this feature in all vehicle classes, thereby making an important contribution to the general improvement of traffic safety. Based on an analysis of the mechanically detectable physical variables for recognizing a panic situation and an evaluation of possible methods of mechanical valve activation, the paper presents a mass production solution and describes its functional properties. In particular, it should be noted that the possibility of controlling the braking pressure within the brake assist function even represents a functional advantage
Technical Paper

“In-Car” Fatigue Data Acquisition

1969-02-01
690172
“In-car” measurement of vehicle loads and stresses is a basic step in solving fatigue design problems associated with passenger cars. The application includes measuring systems and techniques for evaluating fatigue design problems related to energy-absorbing steering columns and automotive gas turbines.
Technical Paper

“Geometric Dimensioning and Tolerancing”

1968-02-01
680488
Geometric dimensioning and tolerancing is both a “language” and a “technique.” Its objective is to facilitate design, production, and inspection and, simultaneously, provide the most economic results. This paper describes the implementation and practice to accomplish these through illustrating methods to state design requirements specifically and clearly and to provide for maximum producibility, uniformity of interpretation, etc. The need to reflect a common objective for design, production, and inspection via the stated drawing requirement is emphasized. Application and interpretation of geometric characteristics (emphasizing symbology), fundamentals, rules, etc. are presented. Basis for the content of this paper is USASI Y14.5-1966 “Dimensioning and Tolerancing for Engineering Drawings.”
Technical Paper

“Fatigue Behavior of Sheet Steels for Automotive Industry”

1992-11-01
921439
Carbon and rephosphorized pre-strained sheet steels for cold drawing forming operations were studied and the tensile, high cycle fatigue and fatigue crack propagation properties were determined. The fatigue limit was found to be higher for 20% than for 1% pre-strained condition. Threshold stress intensity factors (▵Ků) of 5.29 MPa. m1/2 for rephosphorized steel and 7.07 MPa. m1/2 for carbon steel. Critical crack lenghts were calculated by ▵Ků and fatigue limit data using the Lukas-Klesnil short-crack criterion. Through fractographic analysis it was possible to determine the general behavior of tested materials near threshold.
Technical Paper

“DELRIN” ACETAL RESIN —a new engineering material

1959-01-01
590033
“DELRIN” is a new thermoplastic which offers high strength, excellent thermal stability, good fatigue life, low creep, and excellent solvent resistance. This paper describes the physical and chemical properties of the material, and the range of possible uses. The material is easily fabricated into complex shapes by standard injection-molding techniques. Also, it can be easily joined to itself or to other materials. The authors think that the material offers advantages over metals in its good fric-tional properties, abrasion resistance, and corrosion resistance.
Technical Paper

“Cromard” Thin Wall Steel Liners and Hard Chrome Plated Liners for High Production Gasoline and Diesel Engines

1964-01-01
640361
This paper, confined to the application of hard chrome plated liners to high-speed four-stroke diesel and gasoline engines, illustrates the increase in their popularity in the United Kingdom, and the advanced production methods which make this economically possible. The need for balanced engine life has long been apparent and is even more important today, the growth of motor transport having outstripped repair facilities. Iron bore life has been surpassed by improvement in the life of other component parts in the modern diesel engine. The provision of hard chrome plated liners can restore the balance. Further development and turbocharging of diesel engines has shown the need for a bore material capable of preventing scuffing and galling at elevated temperatures. Hard chrome has already proved itself in four-stroke engines under these conditions.
Technical Paper

“Concept to Concrete” Development of a Truck Type Street Sweeper

1979-02-01
790879
A new truck type street sweeper has been developed which incorporates some of the sweeping advantages of a three wheeled sweeper (tricycle steer) and the transport advantages of a legal highway truck. It offers major productivity improvements through better operator environment and decrease of nonsweeping time in the operational cycle. It is possible for a small “short line” special purpose vehicle manufacturer to develop, test, and produce such a vehicle and meet Federal regulatory requirements with limited “In house” design and testing facilities. Here this was accomplished through judicious augmentation by outside specialized design and testing organizations.
Technical Paper

“Chip on Glass” Technology for Large Scale Automotive Displays

1984-02-01
840148
Large scale automotive displays e.g., liquid crystal displays, require chip on glass technology at least for the driver-ICs. In this paper different IC-packages, metallization, bonding and encapsulation techniques are compared and conclusions for production methods are drawn.
Technical Paper

“Bump Test” of Wet Friction Materials: Modeling and Experiments

2001-03-05
2001-01-1154
In one of the fatigue tests for wet friction materials, “bump test”, an inertia-type rig equipped with a multi-disk assembly is used. One of the steel disks in the assembly has radial bumps for the purpose of creating high local contact pressure and high temperature. Due to the severe contact conditions, a comparative testing for different friction materials can be conducted within a relatively small number of cycles. In the paper, a design of a “bump” assembly used for automotive wet friction materials is described. Based on both experimental tests and advanced contact modeling, non-uniform contact pressure generated by the bumps and resulting temperature are estimated. The computational model is used then to study the influence of the modulus of elasticity of the friction material and reaction plate thickness on the contact conditions. The bump fatigue tests lead ultimately to material failure.
Technical Paper

“Aluminium Hot Forming: - Opportunities and Challenges in Automotive Light Weighting”

2023-05-25
2023-28-1304
In today’s Automotive world, there is NO need to advocate “Light weighting”. Government policies for carbon footprint reduction combined with high safety standards are driving OEMs to adopt advanced manufacturing technologies. Steel hot forming is selected as most preferred way to reduce weight as it is easy to adopt and commercially known. It had many advantages compare to conventional cold stamping of standard and high tensile steel. The process consists of heating blank to nearly 1000 °C and quenching it in tool to for martensitic structure. Higher strength up to 2000 MPa can be achieved by this process. There are many examples where part weight is reduced by 15 to 20 % by this method. But Steel hot forming has limitation as specific density of steel is still high. Thus, there is limitation to its weight reduction capability. For further reduction, OEMs have started exploring Aluminium hot forming.
Technical Paper

“A Successful Electronic Ignition System thru Fundamental Problem Analysis”

1974-02-01
740154
For 1974, Ford Motor Company is providing, as standard equipment, a solid state ignition system on all 400 CID and 460 CID engines as well as on all California vehicles equipped with 200 through 351 CID engines. This paper explains the Ford solid state ignition system and the objectives and design philosophy that was used in the development of the system. Further, a review of the design and production validation test plans is discussed. With this background, specific examples of the effectiveness of complete problem analysis for fundamental cause and corrective action is presented in addition to control methods and evaluation of corrective action. This problem analysis system allowed this automotive electronic product to go into production with a high degree of confidence in meeting the reliability goals.
Technical Paper

‘Almost’ Real-Time Diagnosis and Correction of Manufacturing Scrap Using an Expert System

1987-04-07
870905
This paper describes preliminary findings on an expert system that uses both operator and transducer inputs in ‘almost’ real-time to diagnose scrap type and recommend corrective action to reduce/eliminate further production of this scrap type. During the development of the expert system, equal consideration was given to hardware installation and debugging; system architecture, logic, and triggering; and knowledge acquisition. The system is applied to a specific manufacturing process; however, the ideas are applicable to a wide range of problems in the production environment.
X