Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Sensors in Small Engines – Previous Successes and Promising Future Use Cases

2023-10-24
2023-01-1837
Virtual sensing, i.e., the method of estimating quantities of interest indirectly via measurements of other quantities, has received a lot of attention in various fields: Virtual sensors have successfully been deployed in intelligent building systems, the process industry, water quality control, and combustion process monitoring. In most of these scenarios, measuring the quantities of interest is either impossible or difficult, or requires extensive modifications of the equipment under consideration – which in turn is associated with additional costs. At the same time, comprehensive data about equipment operation is collected by ever increasing deployment of inexpensive sensors that measure easily accessible quantities. Using this data to infer values of quantities which themselves are impossible to measure – i.e., virtual sensing – enables monitoring and control applications that would not be possible otherwise.
Technical Paper

Thermodynamic Loss Analysis of a High Power Motorcycle Engine with Focus on Alcohol Blended Fuels

2017-11-05
2017-32-0070
The development of future internal combustion engines and fuels is influenced by decreasing energy resources, restriction of emission legislation and increasing environmental awareness of humanity itself. Alternative renewable fuels have, in dependency on their physical and chemical properties, on the production process and on the raw material, the potential to contribute a better well-to-wheel-CO2-emission-balance in automotive and nonautomotive applications. The focus of this research is the usage of alcohol fuels, like ethanol and 2-butanol, in motorcycle high power engines. The different propulsion systems and operation scenarios of motorcycle applications in comparison to automobile applications raise the need for specific research in this area.
Technical Paper

Thermodynamic Limits of Efficiency Enhancement of Small Displacement Single-Cylinder Engines

2015-11-17
2015-32-0817
Millions of small displacement single-cylinder engines are used for the propulsion of scooters, motorcycles, small boats and others. These SI-engines represent the basis of an affordable mobility in many countries, but at the same time their efficiency is quite low. Today, the limited fossil fuel resources and the anthropogenic climate require a sustainable development of combustion engines, the reduction of fuel consumption being an important factor. A variety of different strategies (turbo-charging, cylinder deactivation, direct injection, etc.) are investigated here to increase the efficiency of multi-cylinder engines. In the case of small displacement single-cylinder engines, other strategies are required because of their special design and the high pressure on costs. In the context of this paper different layout parameters which have an influence on the working process are investigated, with the aim of increasing the efficiency of small displacement single-cylinder engines.
Technical Paper

Study of Possible Range Extender Concepts with Respect to Future Emission Limits

2010-09-28
2010-32-0129
The future exhaust emission legislation limits and the procedures for running the test cycles will have an important influence on future range extender concepts. Due to the special steady state operation strategy of the range extender engines, it is possible to create a simple methodology for comparing engine test bench emissions with the emission limits of exhaust gas legislations. Therefore the energy demand of a predefined vehicle was simulated with PHEM, a longitudinal dynamic simulation tool. According to that, the influence of different exhaust gas after treatment systems and preheating options on the tolerated raw emission concentration will be analyzed. With this information, a few chosen range extender engine concepts will be compared concerning their suitability for future exhaust emission legislations. The selection of the range extender concepts was carried out with the methotology of a value benefit analysis.
Technical Paper

Results, Assessment and Legislative Relevance of RDE and Fuel Consumption Measurements of Two-Wheeler-Applications

2017-11-05
2017-32-0042
The reduction of environmentally harmful gases and the ambitions to reduce the exploitation of fossil resources lead to stricter legislation for all mobile sources. Legislative development significantly affected improvements in emissions and fuel consumptions over the last years, mainly measured under laboratory conditions. But real world operating scenarios have a major influence on emissions and it is already well known that these values considerably differ from officially published figures [1]. There are regulated emissions by the European Commission by means of real driving scenarios for passenger cars. A methodology to measure real drive emissions RDE is therefore well approved for automotive applications but was not adapted for two-wheeler-applications yet [2]. Hence measurements have been performed on-road and on chassis dynamometer for motorcycles with the state of the art RDE measurement equipment to be prepared for possible future legislation.
Technical Paper

Real World Operation of a Standard Lawn Mower Engine from a Scientific Perspective

2013-10-15
2013-32-9124
This paper introduces a research project on a spark ignition engine used in non-road applications. The aim is to illustrate the present situation as basis for comparison and to identify possible improvement potential in terms of performance, efficiency or exhaust and noise emissions. The study is carried out in two steps. First a standard walk-behind lawn mower is equipped with measuring instrumentation for recording the cutting forces and the engine variables during real world operation. The tests are carried out on three different lawn types and two different blade types are investigated. Consequently, in a second step the engine is analysed on the engine test bench in stationary and transient operating mode. A complete engine mapping is done regarding all relevant variables. Additionally to the outdoor tests, fuel consumption and engine out emissions are measured on the engine dynamometer. The recorded data enables a detailed analysis of the engine behaviour.
Technical Paper

Practicability and Influencing Factors of a Lean Burn Mode for Two-Stroke Engines in Hand-Held Powertools

2017-11-05
2017-32-0043
For many applications, such as scooters, hand-held power tools and many off-road vehicles, two-stroke engines are used as a preferred propulsion unit. These engines convince by a good power to weight ratio, a high durability and low maintenance technology and are therefore the first choice in this field of application. In general, already much development effort has been expended to improve those systems. However, an increasing environmental awareness, the protection of health and the shortage of fossil resources are the driving factors to further enhance the internal combustion process of those adapted two-stroke engines. The current focus here is on the reduction of emissions and fuel consumption with an at least constant power output. An approach to address an improvement of engine efficiency can be covered by applying a lean combustion burn mode.
Technical Paper

Potential for Particulate Reduction by Use of eFuels in MPFI Engines

2023-10-24
2023-01-1848
Currently, emission regulations for the LVs using standard spark ignited ICEs considering only gaseous pollutants, just as CO, HC and NOx. Following the upcoming legislation for personal vehicles sector, the LVs might also include limits of PN and PM. Regarding fuel injection strategies, the MPFI which was previously excluded from particulate control will be incorporated into the new regulation [1]. In terms of social harm, there will be a necessity to reduce engine particulate emissions, as they are known for being carcinogenic substances [2, 3, 4]. Generally, the smaller the particulate diameter, the more critical are the damages for human health therefore, the correct determination of PN and particulate diameter is essential. Beside future challenges for reducing and controlling particulates, the reduction of fossil fuel usage is also an imminent target, being the replacement by eFuels one of the most promising alternatives.
Technical Paper

Overview of Different Gas Exchange Concepts for Two-Stroke Engines

2018-10-30
2018-32-0041
The concept of a loop scavenged two-stroke engine, controlling the intake and exhaust port by the moving piston, is a proven way to realize a simple and cheap combustion engine. But without any additional control elements for the gas exchange this concept quickly reaches its limits for current emission regulations. In order to fulfil more stringent emission and fuel consumption limits with a two-stroke engine, one of the most important measures is to avoid scavenging losses of fuel and oil. Additionally, it is necessary to follow a lambda = 1 concept for a 3-way exhaust gas after-treatment. Therefore, using internal mixture preparation systems in combination with different concepts to control the gas exchange process, the two-stroke engine could become a choice for automotive applications, especially as a Range Extender in a Plugin Hybrid Electric Vehicle (PHEV).
Journal Article

Layout of a Charged Power Sport Engine

2012-10-23
2012-32-0069
The main target for the development of power sport engines is and will be in future the increase of the power-to-weight ratio. However, the reduction of carbon dioxide emissions is getting more and more important as future legislation and increasing customer demands ask for lower fuel consumption. One possible technology for CO₂ reduction which is widely used in automotive applications is downsizing by reducing the engine capacity and increasing the specific power by charging strategies. Focusing on power sport applications, like motorcycles, the automotive downsizing technologies cannot be transferred without major modifications. The essential difference to automotive applications is the extraordinary response behavior of today's motorcycles, as well as the large engine speed spread. Additionally, packaging and cost reasons exclude the direct transfer of highly complex automotive technology, like two-stage charging, cam-phasing, etc., to motorcycle applications.
Technical Paper

Ion Current Comparison in Small, Fast Running Gasoline Engines for Non-Automotive Applications

2018-10-30
2018-32-0077
Small engines for non-automotive applications include 2-stroke and 4-stroke gasoline engine concepts which have a reduced number of sensors due to cost and packaging constraints. In order to cope with future emission regulations, more sophisticated engine control and monitoring becomes mandatory. Therefore, a cost-effective way has to be found to gain maximum information from the existing sensors and actuators. Due to an increasing bio-fuel share in the market, the detection of bio-fuel content is necessary to guarantee a stable combustion by adapting the injection and ignition control strategy. Meaningful information about the combustion can be retrieved from combustion chamber ion current measurements. This paper proposes a general overview of combustion process monitoring in different engine concepts by measuring the ion current during combustion.
Technical Paper

Investigations on Low Pressure Gasoline Direct Injection for a Standard GDI Combustion System

2010-09-28
2010-32-0094
In the course of the last few years a continuous increase of the injection pressure level of gasoline direct injection systems appeared. Today's systems use an injection pressure up to 200bar and the trend shows a further increase for the future. Although several benefits go along with the increased injection pressure, the disadvantages such as higher system costs and higher energy demand lead to the question of the lowest acceptable injection pressure level for low cost GDI combustion systems. Lowering injection pressure and costs could enable the technological upgrading from MPFI to GDI in smaller engine segments, which would lead to a reduction of CO2 emission. This publication covers the investigation of a low pressure GDI system (LPDI) with focus on small and low cost GDI engines. The influence of the injection pressure on the fuel consumption and emission behavior was investigated using a 1.4l series production engine.
Journal Article

Investigations and Analysis of Working Processes of Two-Stroke Engines with the Focus on Wall Heat Flux

2016-11-08
2016-32-0028
Small displacement two-stroke engines are widely used as affordable and low-maintenance propulsion systems for motorcycles, scooters, hand-held power tools and others. In recent years, considerable progress regarding emission reduction has been reached. Nevertheless, a further improvement of two-stroke engines is necessary to cover protection of health and environment. In addition, the shortage of fossil fuel resources and the anthropogenic climate change call for a sensual use of natural resources and therefore, the fuel consumption and engine efficiency needs to be improved. With the application of suitable analyses methods it is possible to find improving potential of the working processes of these engines. The thermodynamic loss analysis is a frequently applied method to examine the working process and is universally adaptable.
Technical Paper

Influence of Ethanol and 2-Butanol Blended Fuels on Combustion and Emissions in a Small Displacement Two Stroke Engine

2018-10-30
2018-32-0044
Small displacement two-stroke engines are cheap and low-maintenance propulsion systems and commonly used in scooters, recreation vehicles and handheld power-tools. The restriction by emission legislation and the increasing environmental awareness of end users as well as decreasing energy resources cause a rethinking in the development of propulsion systems and fuels in these fields. Despite recent improvements of electric powertrains, two stroke engines are the challenged propulsion system in high performance handheld power tools at the moment. The reasons are the extraordinary high power to weight ratio of two-stroke engines, the high energy density of liquid fuels and the reliability of the product with respect to extreme ambient conditions. Nevertheless, further improvements on emissions and fuel consumption of small displacement two-stroke engines can be realized.
Technical Paper

Impacts of methanol blended fuels on emissions and operating performance of two-wheelers

2022-01-09
2022-32-0021
Aiming to investigate the influence of methanol blends on the combustion process of a PFI four-stroke boxer engine, four mixtures of pure methanol and oxygen-free gasoline (M0) are prepared. The fuels tested are labelled by M15, M25, M35 and M50, where the number represents the percentual in volume of methanol within the mixture. In order to establish a base for comparisons, standard gas-station gasoline (S95) is also tested. Backwards compatibility is evaluated through test-bed measurements, when the engine operates without any modifications in the ECU. Over the whole operational area of the engine map, M15 and M25 can be used in the motorcycle application. Raw emissions of THC, CO2, CO and NOx decrease with the increase of methanol for almost all the conditions tested. It is observed that knock resistance is higher for higher methanol contents. At WOT, power is increased with the methanol proportion, being M50 and M35 more powerful than standard gasoline.
Technical Paper

Impacts of eFuels on Solid and Gaseous Emissions of Powersport Two-Wheelers

2023-10-24
2023-01-1838
As alternative to electrification or carbon free fuels such as hydrogen, CO2-neutral fuels have been researched aiming to decrease the impact of fossil energy sources on the environment. Despite the potential benefit of capturing CO2 emission after combustion for own fuel production, the so-called eFuels also benefit by using a green source of energy during their fabrication. Among all the possibilities for eFuels, alcohols, ethers (such as MTBE and ETBE) and alternative hydrocarbons have shown positive impacts regarding emission reduction and performance when compared to standard gasoline. Previously in [1] and [2], synthetic fuels and methanol blends were tested at steady state conditions in order to verify advantages and drawbacks relative to gasoline, for power-sport motorcycles.
Journal Article

Future Engine Technology in Hand-Held Power Tools

2012-10-23
2012-32-0111
Today mankind is using highly sophisticated tools which contribute to maintain the standard of living. Nevertheless, these tools have to be further improved in the near future in order to protect health and environment as well as to ensure prosperity. Two-stroke engines equipped with a carburettor are the most used propulsion technology in hand-held power tools like chain saws and grass trimmers. The shortage of fossil resources and the necessary reduction of carbon dioxide emissions ask for improved engine efficiency. Concurrently, customers demand for an easy usage with high performance at all operating conditions, e.g. varying ambient temperature and pressure and different fuels. Moreover, world-wide emission limits will be even stricter in future. The improvement of the emission level, fuel consumption and customer benefits, while keeping the present advantages of two-stroke engines, like high specific power and simplicity, are the goals of this research work.
Technical Paper

Extended Expansion Engine with Mono-Shaft Cam Mechanism for Higher Efficiency - Layout Study and Numerical Investigations of a Twin Engine

2014-11-11
2014-32-0102
The automotive industry has made great efforts in reducing fuel consumption. The efficiency of modern spark ignition (SI) engines has been increased by improving the combustion process and reducing engine losses such as friction, gas exchange and wall heat losses. Nevertheless, further efficiency improvement is indispensable for the reduction of CO2 emissions and the smart usage of available energy. In the previous years the Atkinson Cycle, realized over the crank train and/or valve train, is attracting considerable interest of several OEMs due to the high theoretical efficiency potential. In this publication a crank train-based Atkinson cycle engine is investigated. The researched engine, a 4-stroke 2 cylinder V-engine, basically consists of a special crank train linkage system and a novel Mono-Shaft valve train concept.
Technical Paper

Expansion to Higher Efficiency - Investigations of the Atkinson Cycle in Small Combustion Engines

2012-10-23
2012-32-0059
Small combustion engines can be found in various applications in daily use (e.g. as propulsion of boats, scooters, motorbikes, power-tools, mobile power units, etc.) and have predominated these markets for a long time. Today some upcoming competitive technologies in the field of electrification can be observed and have already shown great technical advances. Therefore, small combustion engines have to keep their present advantages while concurrently minimizing their disadvantages in order to remain the predominant technology in the future. Whereas large combustion engines are most efficient thermal engines, small engines still suffer from significantly lower efficiencies caused by a disadvantageous surface to volume ratio. Thus, the enhancement of efficiency will play a key role in the development of future small combustion engines. One promising possibility to improve efficiency is the use of a longer expansion than compression stroke.
Technical Paper

Exhaust System Simulation of a 2-Cylinder 2-Stroke Engine Including Heat Transfer Effects

2010-09-28
2010-32-0035
The exhaust system design has an important influence on the charge mass and the composition of the charge inside the cylinder, due to its gas dynamic behavior. Therefore the exhaust system determines the characteristics of the indicated mean effective pressure as well. The knowledge of the heat transfer and the post-combustion process of fuel losses inside the exhaust system are important for the thermodynamic analysis of the working process. However, the simulation of the heat transfer over the exhaust pipe wall is time consuming, due to the demand for a transient simulation of many revolutions until a cyclic steady condition is reached. Therefore, the exhaust pipe wall temperature is set to constant in the conventional CFD simulation of 2-stroke engines. This paper covers the discussion of a simulation strategy for the exhaust system of a 2-cylinder 2-stroke engine until cyclic steady condition including the heat transfer over the exhaust pipe wall.
X