Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Particulate Filter Soot Load Measurements using Radio Frequency Sensors and Potential for Improved Filter Management

2016-04-05
2016-01-0943
Efficient aftertreatment management requires accurate sensing of both particulate filter soot and ash levels for optimized feedback control. Currently a combination of pressure drop measurements and predictive models are used to indirectly estimate the loading state of the filter. Accurate determination of filter soot loading levels is challenging under certain operating conditions, particularly following partial regeneration events and at low flow rate (idle) conditions. This work applied radio frequency (RF)-based sensors to provide a direct measure of the particulate filter soot levels in situ. Direct measurements of the filter loading state enable advanced feedback controls to optimize the combined engine and aftertreatment system for improved DPF management. This study instrumented several cordierite and aluminum titanate diesel particulate filters with RF sensors. The systems were tested on a range of light- and heavy-duty applications, which included on- and off-road engines.
Journal Article

Optimal Use of Ethanol in Dual Fuel Applications: Effects of Engine Downsizing, Spark Retard, and Compression Ratio on Fuel Economy

2016-04-05
2016-01-0786
Turbocharging, increasing the compression ratio, and downsizing a spark-ignition engine are well known strategies for improving vehicle fuel economy. However, such strategies increase the likelihood of engine knock due to higher in-cylinder pressures and temperatures. A high octane fuel, such as E85, effectively suppresses knock but is not necessary in most parts of the engine operating map. To better utilize a high octane fuel, dual fuel injection has been suggested where high octane fuel is injected only when the engine is about to knock. However, the effects of downsizing, retarding spark timing, and increasing compression ratio on dual fuel applications are not well understood. To investigate these questions, GT-power simulations along with engine experiments and engine-in-vehicle simulations for a passenger vehicle and a medium-duty truck were conducted.
Technical Paper

Advanced RF Particulate Filter Sensing and Controls for Efficient Aftertreatment Management and Reduced Fuel Consumption

2015-04-14
2015-01-0996
Although designed for the purpose of reducing engine-out Particulate Matter (PM) emissions to meet or exceed mandated emissions regulations, the particulate filter also incurs a fuel economy penalty. This fuel penalty is due to the increased exhaust flow restriction attributed to the PM accumulated in the filter, in addition to fuel consumed for active regeneration. Unlike the soot which may be oxidized through the regeneration process, incombustible material or ash continues to build-up in the filter following each regeneration event. Currently pressure- and model-based controls are used to provide an indirect estimate of the loading state of the particulate filter, in order to manage the filter operation and determine when to regenerate the filter. The challenges associated with pressure- and model-based particulate filter control over real-world operating conditions are well-known.
X