Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Multi Axis Fatigue Test of Lift Axle Assembly through Real Time Simulation Abstract

2021-09-22
2021-26-0486
This paper discusses the test setup and methodology required to validate complete lift axle assembly for simulating the real time test track data. The correlation of rig vs track is discussed. The approach for reduction of validation time by eliminating few of the non-damaging tracks/events, its correlation with real life condition is discussed, and details are presented. With increased competition, vehicle development time has reduced drastically in recent past. Bench test procedure using accelerated test cycle discussed in this paper will help to reduce development time and cost. Process briefed in this paper can also be used for similar test specification for other structural parts or complete suspension system of heavy commercial vehicles.
Journal Article

Improvement of Rear Seat Vibrations of Passenger Bus by Tuning Damper Characteristics

2021-09-22
2021-26-0075
Passenger vehicles are used as one of the frequently used and versatile mode of transport. Commercial buses cater to short to long distance travel for city as well as highway applications. Thus, passenger ride comfort becomes paramount for the salability of the vehicle. Generally, it is observed that the rear seat experiences the worst ride comfort characteristics due to rear overhang and pitching characteristics of buses. Therefore the objective of this project is to improve the rear seat vibrations of passenger bus by tuning damper characteristics. Shock absorbers, being a low cost and easily interchangeable component is tuned first before optimizing other suspension parameters. The methodology is as follows: first, a 4 degree of freedom mathematical model is created on MATLAB Simulink R2015a environment. Time domain data is obtained by road load data analysis and used as an input for the mathematical model.
Technical Paper

Evaluation of Modal Parameter Estimation Techniques for Simple Structures

2013-11-27
2013-01-2855
Modal analysis is a specialized tool which has been used for many years to reliably estimate various parameters such as natural frequency, mode shape and damping. Since these parameters have direct relevance to the behavior of any component or structure and the resultant vibrations, the methods used for evaluation of these have been taken up as a part of this project. MATLAB is a platform that serves analysis purpose and offers many advantages over dedicated, menu driven systems. Open function assure flexibility and possibility to modify functions for specific needs and also providing traceability and quality assurance. The current paper targets to make a comparative evaluation of various modal parameter estimators using existing MATLAB tools for determining modal parameters for simple structures. FRF measurements on simple structures are carried out and the data is processed using MATLAB run parameter estimators.
Journal Article

Evaluating Influence of On-Road Parameter Variation in HD Application Using Virtual Approach for Upcoming IRDE Norms

2021-09-22
2021-26-0405
Real Driving Emission (RDE) norms have changed the way vehicles are required to be calibrated and developed. This has moved the legislative requirements from predictable lab conditions to more realistic, real world conditions. Current Indian legislation allows certification for Heavy Duty (HD) applications on engine level and therefore decoupled from vehicle and the real world scenarios such as uncertainty and randomness in driver behavior, traffic conditions, road profiles, ambient conditions etc. which are not captured. Upcoming RDE legislation to be implemented in year 2023, has made it necessary to integrate engine with vehicle to consider the impact of various parameters on engine operating points and therefore on tail pipe emissions. This paper focusses upon the methodology developed using RDE cycle generator tool (RCG) for generating on-road parameters which influences the zone of engine operation and resulting emission levels.
Technical Paper

Estimation of Temperature and Velocity Uniformity of Exhaust Gases in Heavy Commercial Vehicle Exhaust System having SCR After Treatment Technology

2016-02-01
2016-28-0112
For meeting upcoming BS IV & BS V emission norms in Heavy Commercial Vehicles, most of the manufacturers are taking SCR after treatment route. Though SCR system is more complex and involves higher cost impact, an optimized SCR system can bring down the payback period to about one year due to improved fuel economy. For development of an SCR after treatment system, selection of a correct SCR catalyst and its position in the system is very important. NOX conversion efficiency of catalyst depends on exhaust gas temperature at the catalyst and the velocity distribution over the face of the catalyst. Generally catalysts are evaluated for the conversion efficiency in engine test bed. In a drive to have a first-time-right solution, a CFD analysis was carried out considering the low and high flow rate conditions. CFD simulation models and the corresponding results were used as a predictive tool in the exhaust system development process.
Technical Paper

EGR Strategies Pertaining to High Pressure and Low Pressure EGR in Heavy Duty CNG Engine to Optimize Exhaust Temperature and NOx Emissions

2021-09-22
2021-26-0114
CNG has proven to be a concrete alternative to gasoline and diesel fuel for sustained mobility. Due to stringent emission norms and sanctions being imposed on diesel fuel vehicles, OEMs have shifted their attention towards natural gas as an efficient and green fuel. Newly implemented BS VI emission norms in India have stressed on the reduction of Nitrogen Oxides (NOx) from the exhaust by almost 85% as compared to BS IV emission norms. Also, Indian Automotive market is fuel economy cautious. This challenges to focus on improving fuel economy but without increase in NOx emissions. Exhaust Gas Recirculation (EGR) has the potential to reduce the NOx emissions by decreasing the in-cylinder temperature. The objective of the paper is to model a CNG TCIC engine using 1D simulation in order to optimize the NOx emissions and maintain exhaust temperatures under failsafe limits.
X