Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Simulation Methodology for Duty Cycle based Fuel Consumption Calculation for Heavy Commercial Vehicles

2021-09-22
2021-26-0221
Automobile industry is facing challenges in the field of technological innovation and achieving minimum Total Cost of Ownership (TCO) despite rise in fuel prices. To overcome these challenges is certainly a challenging task. In doing so, automobile sector is mainly focused on passenger safety, comfort, reliability, meeting stringent emission norms, and above all reducing the vehicle fuel consumption. Referring to the Paris climate agreement, and India’s commitment to reduce the CO2 intensity by 33% - 35% by 2030 below the 2005 levels [1], it is imperative to lay down strong policies and procedure to curb the fuel consumption to contribute for reduction in carbon foot print and oil imports. Transportation sector is majorly responsible for the GHG Emission of which the CO2 emission from commercial vehicles is nearly 73% [2], although the total sales of commercial vehicles are around 4% of cumulative vehicle sales.
Technical Paper

Experimental Analysis of Heavy Duty CNG Engine Based on Its Aspiration and Fuel System

2021-09-22
2021-26-0117
Engine calibration involves the interaction of electronic components with various engine systems like intake system, exhaust system, ignition system, etc. Emissions are the by-products of combustion of fuel and air inside the combustion chamber. After-treatment systems generally take up the responsibility to scrape out harmful emissions from the engines. However, a good engine calibration will focus on emission reduction at source i.e., during the combustion itself. Thus, the intake of air and fuel in proper amount at each engine operating point is crucial for optimized engine performance and minimal emissions. The Intake system is an integral part of any internal combustion engine and it plays an important role to improve its performance and emission. Generally, for a SI engine, maintaining the stoichiometric A/F ratio is a challenging endeavour from an operational standpoint.
Technical Paper

Estimation of Temperature and Velocity Uniformity of Exhaust Gases in Heavy Commercial Vehicle Exhaust System having SCR After Treatment Technology

2016-02-01
2016-28-0112
For meeting upcoming BS IV & BS V emission norms in Heavy Commercial Vehicles, most of the manufacturers are taking SCR after treatment route. Though SCR system is more complex and involves higher cost impact, an optimized SCR system can bring down the payback period to about one year due to improved fuel economy. For development of an SCR after treatment system, selection of a correct SCR catalyst and its position in the system is very important. NOX conversion efficiency of catalyst depends on exhaust gas temperature at the catalyst and the velocity distribution over the face of the catalyst. Generally catalysts are evaluated for the conversion efficiency in engine test bed. In a drive to have a first-time-right solution, a CFD analysis was carried out considering the low and high flow rate conditions. CFD simulation models and the corresponding results were used as a predictive tool in the exhaust system development process.
X