Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Reduced Instruction Set Computers Versus Complex Instruction Set Computers for Gasket Finite Element Analysis

1992-09-01
921706
The intent of this paper will be to address the level of performance and cost of the various complex instruction set computers (CISC-80X86) versus the reduced instruction set computers (RISC). The original concept of reduced instruction set computers will be explained. The above information will be contrasted with how the second generation system functions. Once the operations are established, a discussion of operating performance as related to several types of benchmarks will be cited. A typical FEA model will be used as the final benchmark to determine realistic performance versus speed (wall clock time). The final comparison will be of cost.
Technical Paper

Rapid Prototyping Shortens Hydraulic Component Development Time

1995-09-01
952109
A few years ago hydraulic fluid power component manufacturers had the luxury of long lead times to develop new products. In today's competitive global market, pump and valve design engineers must be able to shorten development lead times and get new, less costly products to production in order to satisfy customer demands. This paper describes how one fluid power component manufacturer uses rapid prototyping technology to speed up the development cycle by making: fit and form models, design evaluation test samples, and tooling for prototype castings.
Technical Paper

Hydraulic Safety Valve Design Using PC Simulation

1996-08-01
961835
In today's global fluid power industry, successful hydraulic component manufacturers must utilize technical resources to maintain a competitive edge. When designing new products, past practice required an understanding of engineering theory and reliable and accurate lab and field testing of new products, but today's designers have a new tool at their disposal. Personal computer based software can be used to model and simulate individual hydraulic components or entire systems before prototypes are available for design and performance evaluation. This paper discusses the design of a hydraulic safety valve and how PC simulation was used to design and analyze valve performance during the design process.
Technical Paper

Heat Generation from Hydraulic System Losses in Refuse Packers

1996-08-01
961836
Heat generated in hydraulic systems can be responsible for reduced life of equipment. Current Industry trends look to load-sensing variable-displacement pumps and closed-center valves to combat the problem. A comparison is made between the load-sensing variable-displacement pump with closed-center control valves and the fixed-displacement pump (both wet and dry valve types) with open-center control valves, to determine the heat generation tradeoffs. The use of tanks, lines and cylinders as a heat radiator is considered. Heat generated by high-pressure leakage of driven members is addressed. The primary focus of this paper is on packer and body hydraulics of refuse trucks.
Technical Paper

Finite Element Topography and Shape Optimization of a Jounce Bumper Bracket

2002-03-19
2002-01-1468
A case study of the application of topography and shape optimization techniques to the design of a jounce bumper bracket of a pick-up truck has been presented. First a sizing (gage) optimization was undertaken to redesign the jounce bumper bracket. Since the weight was not satisfactory it was decided to try shape optimization. A better solution was obtained. Topography optimization, a relatively new technique of bead formation, was then applied and a still better solution was obtained. All these options were presented to the designer to enable him to make a decision based on manufacturing and other constraints. Although all the three solutions seems to give good results the topography optimized jounce bracket results in the least weight, with the penalty of an additional manufacturing operation.
Technical Paper

Design and Development of New Spicer S400-S Tandem Axle

1995-11-01
952667
The design objective of the Spicer S400-S axle program was to develop a light weight, lower torsional vibration, long life tandem drive axle for the heavy truck industry. This was accomplished with the incorporation of a number of new product features and technical advancements, both in design and manufacturing. These include: reduced standouts for improved interaxle driveline angles use of finite element analysis fixed pinion mounting optimization of lube flow and direction of lubrication optimized gear design for improved strength and noise reduction. This paper focuses on these features and also on the development process for the axle, including the use of simultaneous engineering. Utilizing simultaneous engineering, the S400-S was developed from concept to full production in fifteen months.
Technical Paper

A New Heavy Duty Twin Countershaft Transmission Family

1988-10-01
881836
Spicer has developed a new family of transmissions for the class 8 series truck. This paper describes the specifications, design features and thought processes that generated this new transmission design.
X