Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Evaluation of New 10.5″ Substrates for Heavy Duty Diesel Applications

2015-04-14
2015-01-1015
Multiple suppliers have developed new cordierite 10.5″ OD substrates in China market. One key issue is to evaluate the feasibility of their applications to diesel SCR markets. To this end, test procedures were conceived and performed towards multiple substrate characteristics. Besides typical parameters such as product dimensions, structures, and material strength, thermo-mechanical properties were characterized by hot vibration, thermal shock and thermal cycle tests. Flow performance before and after tests was characterized by a hot flow bench. Four suppliers were selected to provide product samples which went through these developed rigorous test procedures. Comparisons of multiple properties were made. Conclusions regarding their applicability and recommendations for future work are provided at the end.
Technical Paper

Development of an Integrated Box SCR System for China IV On-Highway Applications

2014-04-01
2014-01-1539
To satisfy China IV emissions regulations, diesel truck manufacturers are striving to meet increasingly stringent Oxides of Nitrogen (NOx) reduction standards. Heavy duty truck manufacturers demand compact urea SCR NOx abatement designs, which integrate injectors, NOx sensors and necessary components on SCR can in order to save packaging space and system cost. To achieve this goal, aftertreatment systems need to be engineered to achieve high conversion efficiencies, low back pressure, no urea deposit risks and good mechanical durability. Initially, a baseline Euro IV Urea SCR system is evaluated because of concerns on severe deposit formation. Systematic enhancements of the design have been performed to enable it to meet multiple performance targets, including emission reduction efficiency and low urea deposit risks via improved reagent mixing, evaporation, and distribution. Acoustic performance has been improved from the baseline system as well.
Technical Paper

Development of Injector Closely-Coupled SCR System for Horizontal Inlet Configurations

2014-09-30
2014-01-2350
In order to satisfy China IV emissions regulations, a unique design concept was proposed with injector closely coupled with Selective Catalytic Reduction (SCR) system outer body. The benefit of this design is significant in cost reduction and installation convenience. One paper was published to describe the vertical inlet layout [1]; this work is the second part describing applications of this concept to horizontal inlet configurations. For horizontal inlet pipe, two mixing pipe designs were proposed to avoid urea deposit and meet EU IV emission regulations. Computational Fluid Dynamics (CFD) technique was used to evaluate two design concepts; experiments were performed to validate both designs. CFD computations and experiments give the same direction on ranking of the two decomposition tubes. With the straight decomposition pipe design and unique perforated baffle design, no urea deposits were found; in addition, the emission level satisfied EU IV regulations.
Journal Article

Development of Common Rail and Manifold Fluid Delivery Systems for Large Diesel Engine Aftertreatement

2012-09-24
2012-01-1961
EPA 2015 Tier IV emission requirements pose significant challenges to large diesel engine aftertreatment system (EAS) development aimed at reducing exhaust emissions such as NOx and PM. An EAS has three primary subsystems, Aftertreatment hardware, controls and fluid delivery. Fluid delivery is the subsystem which supplies urea into exhaust stream to allow SCR catalytic reaction and/or periodic DOC diesel dosing to elevate exhaust temperatures for diesel particulate filter (DPF) soot regeneration. The purpose of this paper is to discuss various aspects of fluid delivery system development from flow and pressure perspective. It starts by giving an overview of the system requirements and outlining theoretical background; then discusses overall design considerations, injector and pump selection criteria, and three main injector layouts. Steady state system performance was studied for manifold layout.
Technical Paper

Design Optimization of An Integrated SCR System for EU V Heavy Duty Diesel Engines

2016-04-05
2016-01-0945
Selective Catalytic Reduction (SCR) based on urea water solution (UWS) has become a promising technology to reduce Nitrogen Oxides (NOx) emissions for mobile applications. However, urea may undergo incomplete evaporations, resulting in formation of solid deposits on the inner surfaces including walls and mixers, limiting the transformation of urea to ammonia and chemical reaction between NOx and ammonia. Numerous design parameters of SCR system affect the formation of urea deposits [1] ; they are: exhaust condition, injector type, injector mounting angle, geometrical configurations of mixer, injection rate and etc. Research has been available in urea deposits, mixers, urea injection rates and others [2,4,5,6]. In this paper, focus is placed on improving mixing structure design from baseline design of EU IV to EU V. On-road tests indicate that deposits are highly likely to occur near locations where spray and exhaust gas interact most.
Technical Paper

CFD Optimization of Exhaust Manifold for Large Diesel Engine Aftertreatment Systems

2011-09-13
2011-01-2199
To meet EPA Tier IV large diesel engine emission targets, intensive development efforts are necessary to achieve NOx reduction and Particulate Matter (PM) reduction targets [1]. With respect to NOx reduction, liquid urea is typically used as the reagent to react with NOx via SCR catalyst [2]. Regarding to PM reduction, additional heat is required to raise exhaust temperature to reach DPF active / passive regeneration performance window [3]. Typically the heat can be generated by external diesel burners which allow diesel liquid droplets to react directly with oxygen in the exhaust gas [4]. Alternatively the heat can be generated by catalytic burners which enable diesel vapor to react with oxygen via DOC catalyst mostly through surface reactions [5].
Technical Paper

CFD Modeling of Urea Spray and Deposits for SCR Systems

2016-09-27
2016-01-8077
Selective Catalytic Reduction (SCR) has become a mainstream approach to reduce diesel engine NOx emissions. Urea Water Solution (UWS) injection and interactions with mixers and exhaust gases affect the homogeneity of ammonia distribution at catalyst inlet and solid deposits formation on walls / mixer surfaces, therefore influencing SCR performance and durability. Computational Fluid Dynamics (CFD) is used to simulate an EU V compliant SCR system with a dual baffle mixer for heavy duty diesel engines. The modeling procedure is carried out by a multi-dimensional CFD code CONVERGE that includes transient urea transport processes in an exhaust flow configuration, detailed spray break-up, evaporation, wall-film, turbulence, and Conjugate Heat Transfer (CHT) models as well as an automated mesh generation approach. Locations of urea deposits and system pressure drop are predicted and validated against measurements, providing uniformity index (UI) predictions at the catalyst inlet.
X