Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Parabolic Leaf Spring Fatigue Considering Braking Windup Evaluations

2011-09-13
2011-01-2168
Leaf springs are mainly used for absorbing energy associated with road outputs and they release energy coming from the road. If the complete leaf stiffness and each leaf stress distribution can be calculated carefully, while ensuring safety, required ride comfort will also be maintained. The desired vehicle ride height (attitude) under load must be taken into consideration during calculations of leaf spring design. In addition to providing the loads coming from the vehicle, leaf springs are significantly controllers of windup effects. Braking windup causes rotation at the lateral axis. When vertical F jounce load and braking moment are applied to the leaf spring simultaneously, von misses stress value on leafs will increase to a higher level which is very close to and sometimes higher than the tensile strength. The designers must ensure safety and endurance for any case during working conditions. The most critical point is front axle windup stopper position.
Technical Paper

Parabolic Leaf Spring Design Optimization Considering FEA & Rig Test Correlation

2011-09-13
2011-01-2167
Parabolic leaf springs are safety components on the suspension system. They provide ride comfort due to calculated stiffness characteristics and they absorb and release energy associated with the road outputs of a fully loaded vehicle. Leaf springs determine the desired vehicle ride height from the ground. As a critical safety part, leaf spring endurance must be ensured. Conventional leaf springs, multi-parabolic leaf springs and parabolic leaf springs are the general types in use. The most commonly used type of leaf spring is the parabolic leaf spring. The main advantages of parabolic leaf springs are that they are lighter, cheaper, with fatigue advantages, and they isolate more noise. Classical leaf spring design and prototype process methodology consists of fatigue tests repeated for each case considering different geometry alternatives, leaf layer additions, material and suspension hard points improvements. This methodology takes a long time and requires a significant budget.
X