Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“EVO: New Metallic Substrate Development for Commercial Vehicle and Non-Road Applications”

2021-09-22
2021-26-0211
Affordable, efficient and durable catalytic converters for the Commercial Vehicle and Non-Road industry in all countries are required to reduce vehicle emissions under real world driving conditions and fulfill future legal requirements. Specially for India traffic conditions and payload to engine size conditions new cost-effective solutions are needed to participate in a cleaner and healthier environment. Metallic substrates with structured foils like the Transversal StructureTM (TS) or the Longitudinal StructureTM (LS) have been proved to be capable of improving conversion behavior, even with smaller catalyst size. Now Vitesco Technologies is developed a new Substrate for Heavy duty applications that specifically maintains the geometric surface area at a very high level and improves further the mass transport of the pollutants, which potentially leads together to very high pollutant conversion rates.
Technical Paper

modeFRONTIER for Virtual Design and Optimization of Compact Heat Exchangers

2014-09-30
2014-01-2406
The main purpose of this study is the development of an innovative methodology for Heat Exchangers (HE) design to replace the conventional design procedures. The new procedure is based on the definition of a software package managed by modeFRONTIER, a multi-objective optimization software produced by ESTECO, able to create HE virtual models by targeting several objectives, like HE performance, optimal use of material, HE minimal weight and size and optimal manufacturability. The proposed methodology consists first in the definition of a workflow for the automatic CFD simulation of a parametric model of a periodic HE cellular element.
Technical Paper

Why Not Convert to Ductile Iron?

2002-03-19
2002-01-1451
Cast iron is generally thought of as a weak, dirty, cheap, brittle material that does not have a place in applications requiring high strength and defined engineering properties. While gray cast iron is relatively brittle by comparison with steel, ductile iron is not. In fact, ductile iron has strengths and toughness very similar to steel and the machinability advantages make an attractive opportunity for significant cost reductions. Gray and ductile iron bar stock is commercially available and can be used as a direct replacement in applications that are currently being made from carbon steel bar. Ductile iron bar stock conversions are very prevalent in many fluid power applications including glands and rod guides, cylinders, hydrostatic transmission barrels and in high-pressure manifolds. Automotive gears are being converted to ductile iron for its damping capacity and cost reductions.
Technical Paper

Why Not 125 BMEP in an L-Head Truck Engine?

1939-01-01
390130
HIGH output per cubic inch of piston displacement is desirable not alone for the purpose of being able to transport more payload faster, but more particularly for the invariably associated byproduct of lower specific fuel consumption, and especially at road-load requirements. The only way of accomplishing this purpose is through the use of higher compression ratios, and the limiting factors for this objective are fuel distribution and the operating temperatures of the component parts. A manifold is proposed which not only definitely improves distribution at both full and road loads, but has the inherent additional advantage of reducing the formation of condensate, thus still further facilitating a reduction in road-load specific fuel consumption. Hydraulic valve lifters, obviation of mechanical and thermal distortion, and controlled water flow are the essentials in improved cooling.
Technical Paper

Well-to Wheel Greenhouse Gas Emissions of LNG Used as a Fuel for Long Haul Trucks in a European Scenario

2013-09-08
2013-24-0110
The EU Commission's “Clean Power for Transport” initiative aims to break the EU's dependence on imported oil whilst promoting the use of alternative fuels to reduce greenhouse gas emissions. Among the options considered is the use of liquefied natural gas (LNG) as a substitute for diesel in long haul trucks. It is interesting to ask how the lifecycle greenhouse gas (GHG) emissions of LNG compare with conventional diesel fuel for this application. The LNG available in Europe is mainly imported. This paper considers the “well-to-tank” emissions of LNG from various production routes, including: gas production, treatment and liquefaction, shipping to Europe, terminal, distribution and refuelling operations. “Tank-to-Wheel” emissions are considered for a range of currently-available engine technologies of varying efficiency relative to diesel.
Technical Paper

Wear of Bearing Materials

1994-04-01
941111
Wear characteristics of four bearing materials have been investigated under different sliding conditions. The bearing materials used were CDA 954, CDA 863, CDA 932, and CDA 938. Using a Taber Wear Tester, a cylinder on a flat geometry was used as a tribo contact pair. All bearing materials in the form of a thick cylindrical disk were subjected to combined sliding-rolling motion against a rotating flat disk. The flat disk was either an abrasive disk, or a very soft steel disk, or a hardened steel disk with and without lubrication. Wear was measured as weight loss after several thousand cycles of rotation. Maximum wear of the bearing materials occurred when the counter body was a very soft steel disk. These results together with the wear rate of each bearing material sliding against four different counter bodies are presented. These results are found to be of practical importance in the design and application of journal bearings made of materials used in this investigation.
Technical Paper

Wear Trends of Axial Piston Type Pumps Operating in Severe Environments

1989-09-01
891868
Axial piston type pumps are often exposed to severe operating conditions because of the duty cycle, the environment, or, in some situations, poor maintenance and even abuse. The detrimental effects on the pump and the hydraulic system as a result of these adverse conditions are often not known or predictable. In this study, four controlled severe operating conditions were imposed on four identical axial piston type pumps. They included 1) constant high load pressure and normal fluid temperature, 2) constant high load pressure and elevated fluid temperature, 3) cyclic load pressure and normal fluid temperature, and 4) cyclic load pressure and elevated fluid temperature. The tests were long-term; they were run continuously for up to 5000 hours. The pump wear was monitored in all cases using ferrography. In addition, the condition of the fluid was monitored and the circuit filters were examined periodically. The results of the findings are presented in this paper.
Technical Paper

Water Rejection of Vegetable Oil Base Stocks for Tractor/Hydraulic Fluids

1995-09-01
952073
Separation of water from vegetable oil base stocks for environmentally acceptable tractor/hydraulic fluids was studied. Mixtures of canola, a representative vegetable oil, with mineral oil and three synthetic esters were emulsified and allowed to separate. In additional work, hydrogen bonding interfering compounds, alcohols and nitrogen containing compounds, were added to base stocks and finished fluids to improve the water rejection properties. Two of the synthetic esters were found to improve water rejection in economical concentrations, while the other formed a stable emulsion with the vegetable oil and water. The mineral oil tested formed a stable water-in-oil emulsion with low concentrations of canola oil, then reacheed a maximum rejection concentration as the canola increased, since canola forms a oil-in-water emulsion. The hydrogen bonding inhibitors worked with base stocks but were not helpful when the additive package was included.
Article

Waste heat recovery issues, challenges to be discussed at SAE symposium

2018-04-01
The challenges of climate change and energy security require a continuous effort toward reduction of global environmental pollution and fossil oil consumption. To meet greenhouse gas (GHG) emission targets and to decrease oil dependency, overall energy consumption of vehicles must be substantially reduced.
Journal Article

Waste Heat Recovery: The Next Challenge for Commercial Vehicle Thermomanagement

2012-04-16
2012-01-1205
A significant driver for the development of future commercial vehicles is likely to be the introduction of fuel consumption related legislation in various regions around the world. The application of a waste heat recovery system to the powertrain of such vehicles is seen as a possible step, amongst many, to help them achieve the required fuel economy. In particular, the Rankine Cycle (a closed steam cycle) is often proposed as a potential means for deriving work from the engine exhaust heat. Rankine Cycle systems are already in use in off-highway applications, such as stationary engines or marine power-packs. However, the technical and commercial viability of these systems for on-highway, principally long haul truck application is as yet unproven. Aspects such as the in-use economy benefits, the system performance density, the component robustness and all interactions with the other vehicle systems have to be evaluated.
Journal Article

Waste Heat Recovery for Light-Duty Truck Application Using ThermoAcoustic Converter Technology

2017-03-28
2017-01-0153
Nearly a third of the fuel energy is wasted through the exhaust of a vehicle. An efficient waste heat recovery process will undoubtedly lead to improved fuel efficiency and reduced greenhouse gas (GHG) emissions. Currently, there are multiple waste heat recovery technologies that are being investigated in the auto industry. One innovative waste heat recovery approach uses Thermoacoustic Converter (TAC) technology. Thermoacoustics is the field of physics related to the interaction of acoustic waves (sonic power) with heat flows. As in a heat engine, the TAC produces electric power where a temperature differential exists, which can be generated with engine exhaust (hot side) and coolant (cold side). Essentially, the TAC converts exhaust waste heat into electricity in two steps: 1) the exhaust waste heat is converted to acoustic energy (mechanical) and 2) the acoustic energy is converted to electrical energy.
Standard

Volumetric Rating of Excavator Mounted, Bucket Linkage Operated Grapples

2007-06-12
HISTORICAL
J2754_200706
This standard specifies a procedure for approximating the volume of materials contained in the grapple of bucket linkage operated grapples mounted to excavators. The volume ratings are based on the inside dimensions of the grapple and representative volumes extending beyond the grapple. The method employs the technique of dividing the complex shape of the material in the grapple into simple geometric forms to allow volume calculations of different grapple configurations. The rating method is intended to provide a consistent means of comparing grapple capacities. It is not intended to define actual capacities that might be observed in any specific application.
Journal Article

Virtual Cylinder Pressure Sensor for Transient Operation in Heavy-Duty Engines

2015-04-14
2015-01-0872
Cylinder pressure-based combustion control is widely introduced for passenger cars. Benefits include enhanced emission robustness to fuel quality variation, reduced fuel consumption due to more accurate (multi-pulse) fuel injection, and minimized after treatment size. In addition, it enables the introduction of advanced, high-efficient combustion concepts. The application in truck engines is foreseen, but challenges need to be overcome related to durability, increased system costs, and impact on the cylinder head. In this paper, a new single cylinder pressure sensor concept for heavy-duty Diesel engines is presented. Compared to previous studies, this work focuses on heavy-duty Diesel powertrains, which are characterized by a relatively flexible crank shaft in contrast to the existing passenger car applications.
Technical Paper

Videogrammetry in Vehicle Crash Reconstruction with a Moving Video Camera

2018-04-03
2018-01-0532
In an accident reconstruction, vehicle speeds and positions are always of interest. When provided with scene photographs or fixed-location video surveillance footage of the crash itself, close-range photogrammetry methods can be useful in locating physical evidence and determining vehicle speeds and locations. Available 3D modeling software can be used to virtually match photographs or fixed-location video surveillance footage. Dash- or vehicle-mounted camera systems are increasingly being used in light vehicles, commercial vehicles and locomotives. Suppose video footage from a dash camera mounted to one of the vehicles involved in the accident is provided for an accident reconstruction but EDR data is unavailable for either of the vehicles involved. The literature to date describes using still photos to locate fixed objects, using video taken from stationary camera locations to determine the speed of moving objects or using video taken from a moving vehicle to locate fixed objects.
Technical Paper

Vickers New PVH Variable Volume Pumps

1991-09-01
911803
This paper outlines the design philosophy and evaluation of the new “H” series variable displacement, medium pressure, open-circuit, axial piston hydraulic pumps. The “H” series is based on previously existing, technically successful, rotating group designs, but has significant design improvements affecting the areas of: Unit Weight Envelope Size Ease of Assembly, Disassembly, Repairability and Modification Alternate Fluid Capabilities The “H” series is a family of naturally aspirated pumps nominally rated at 250 or 275 bar (3625 or 4000 psig), depending on system operating parameters. The geometric displacements of the four units in the series are as follows: 57cc (3.5 cu. in./rev.) 74cc (4.5 cu. in./rev.) 98cc (6.0 cu. in./rev.) 131cc (8.0 cu. in./rev.)
Technical Paper

Viability of Alternative Fuels to Decarbonize the World’s Largest Agricultural Tractor Market

2024-01-16
2024-26-0065
India is the market with the highest sales of agricultural tractors and the market with the highest number of agricultural tractor park, as well. Even though taking into account the lower average power of Indian agricultural tractors compared to regions with considerably larger field sizes, their cumulated diesel fuel consumption reaches a significant size. The possible use of alternative powertrains like battery-electric, especially considering the lower power of the Indian tractor market, seems feasible, but might be struggling with challenges in terms of charging infrastructure and the possibly resulting lower productivity due to required charging times. Therefore AVL proposes to investigate the use of alternative fuels for internal combustion engines, a topic which is also being discussed by other global tractor OEMs. In that context the focus is typically on higher tractor powers due to current storage limitations of battery-electric systems and other alternatives.
Technical Paper

Vehicle Control Development - Converting a Medium-Duty Commercial Truck into a Battery Electric Vehicle

2024-04-09
2024-01-2047
The transition towards electrification in commercial vehicles has received more attention in recent years. This paper details the conversion of a production Medium-Duty class-5 commercial truck, originally equipped with a gasoline engine and 10-speed automatic transmission, into a battery electric vehicle (BEV). The conversion process involved the removal of the internal combustion engine, transmission, and differential unit, followed by the integration of an ePropulsion system, including a newly developed dual-motor beam axle that propels the rear wheels. Other systems added include an 800V/99 kWh battery pack, advanced silicon carbide (SiC) inverters, an upgraded thermal management system, and a DC fast charging system. A key part of the work was the development of the propulsion system controls, which prioritized drivability, NVH suppression, and energy optimization.
X